Gadobutrol je organsko jedinjenje, koje sadrži 18 atoma ugljenika i ima molekulsku masu od 604,710 Da.[1][2][3][4][5]

Gadobutrol
Klinički podaci
Prodajno imeGadavist, Gadovist
Drugs.comMonografija
Način primeneIntravenozno
Farmakokinetički podaci
Poluvreme eliminacije1,8 h
IzlučivanjeRenalno
Identifikatori
CAS broj138071-82-6 ДаY
ATC kodV08CA09 (WHO)
PubChemCID 72057
DrugBankDB06703 ДаY
ChEBICHEBI:68841 ДаY
ChEMBLCHEMBL1628503 ДаY
Hemijski podaci
FormulaC18H31N4O9
Molarna masa604,710
  • [Gd+3].OC[C@@H](O)[C@@H](CO)N1CCN(CC([O-])=O)CCN(CC([O-])=O)CCN(CC([O-])=O)CC1
  • InChI=1/C18H34N4O9.Gd/c23-12-14(15(25)13-24)22-7-5-20(10-17(28)29)3-1-19(9-16(26)27)2-4-21(6-8-22)11-18(30)31;/h14-15,23-25H,1-13H2,(H,26,27)(H,28,29)(H,30,31);/q;+3/p-3/t14-,15-;/s2 ДаY
  • Key:ZPDFIIGFYAHNSK-ZCTZICQLNA-K ДаY

Osobine уреди

Osobina Vrednost
Broj akceptora vodonika 13
Broj donora vodonika 3
Broj rotacionih veza 10
Particioni koeficijent[6] (ALogP) -7,0
Rastvorljivost[7] (logS, log(mol/L)) 3,0
Polarna površina[8] (PSA, Å2) 244,3

Reference уреди

  1. ^ Scott, Lesley J. (2013). „Gadobutrol: A Review of Its Use for Contrast-Enhanced Magnetic Resonance Imaging in Adults and Children”. Clinical Drug Investigation. 33 (4): 303—314. PMID 23435930. S2CID 207483597. doi:10.1007/s40261-013-0066-0. 
  2. ^ Wack, Christiane; Steger-Hartmann, Thomas; Mylecraine, Louis; Hofmeister, Rainer (2012). „Toxicological Safety Evaluation of Gadobutrol”. Investigative Radiology. 47 (11): 611—623. PMID 23011188. S2CID 10146613. doi:10.1097/RLI.0b013e318263f128. 
  3. ^ Künnemeyer, Jens; Terborg, Lydia; Nowak, Sascha; Scheffer, Andy; Telgmann, Lena; Tokmak, Faruk; Günsel, Andreas; Wiesmüller, Gerhard; Reichelt, Stephan; Karst, Uwe (2008). „Speciation Analysis of Gadolinium-Based MRI Contrast Agents in Blood Plasma by Hydrophilic Interaction Chromatography/Electrospray Mass Spectrometry”. Analytical Chemistry. 80 (21): 8163—8170. PMID 18821778. doi:10.1021/ac801264j. 
  4. ^ Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Neveu, V.; Djoumbou, Y.; Eisner, R.; Guo, A. C.; Wishart, D. S. (2011). „DrugBank 3.0: A comprehensive resource for 'omics' research on drugs”. Nucleic Acids Research. 39 (Database issue): D1035—41. PMC 3013709 . PMID 21059682. doi:10.1093/nar/gkq1126. 
  5. ^ Wishart, D. S.; Knox, C.; Guo, A. C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. (2008). „DrugBank: A knowledgebase for drugs, drug actions and drug targets”. Nucleic Acids Research. 36 (Database issue): D901—6. PMC 2238889 . PMID 18048412. doi:10.1093/nar/gkm958. 
  6. ^ Ghose, A.K.; Viswanadhan V.N. & Wendoloski, J.J. (1998). „Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragment Methods: An Analysis of AlogP and CLogP Methods”. J. Phys. Chem. A. 102: 3762—3772. doi:10.1021/jp980230o. 
  7. ^ Tetko, I. V.; Tanchuk, V. Y.; Kasheva, T. N.; Villa, A. E. (2001). „Estimation of aqueous solubility of chemical compounds using E-state indices”. Journal of Chemical Information and Computer Sciences. 41 (6): 1488—1493. PMID 11749573. doi:10.1021/ci000392t. 
  8. ^ Ertl, P.; Rohde, B.; Selzer, P. (2000). „Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties”. Journal of Medicinal Chemistry. 43 (20): 3714—3717. PMID 11020286. doi:10.1021/jm000942e. 

Literatura уреди

Spoljašnje veze уреди


 Molimo Vas, obratite pažnju na važno upozorenje
u vezi sa temama iz oblasti medicine (zdravlja).