Jakobijevi polinomi , često zvani i hipergeometrijski polinomi su klasični ortogonalni polinom predstavljeni formulom:
P
n
(
α
,
β
)
(
z
)
=
Γ
(
α
+
n
+
1
)
n
!
Γ
(
α
+
β
+
n
+
1
)
∑
m
=
0
n
(
n
m
)
Γ
(
α
+
β
+
n
+
m
+
1
)
Γ
(
α
+
m
+
1
)
(
z
−
1
2
)
m
.
{\displaystyle P_{n}^{(\alpha ,\beta )}(z)={\frac {\Gamma (\alpha +n+1)}{n!\,\Gamma (\alpha +\beta +n+1)}}\sum _{m=0}^{n}{n \choose m}{\frac {\Gamma (\alpha +\beta +n+m+1)}{\Gamma (\alpha +m+1)}}\left({\frac {z-1}{2}}\right)^{m}~.}
Gegenbauerovi polinomi , Ležandrovi polinomi i Čebiševljevi polinomi predstavljaju specijalni slučaj Jakobijevih polinoma. Jakobijeve polinome otkrio je 1859 . nemački matematičar Karl Gustav Jakobi .
Diferencijalna jednačina
uredi
Jakobijevi polinomi predstavljaju rešenje linerane homogene diferencijalne jednačine drugoga reda:
(
1
−
x
2
)
y
″
+
(
β
−
α
−
(
α
+
β
+
2
)
x
)
y
′
+
n
(
n
+
α
+
β
+
1
)
y
=
0.
{\displaystyle (1-x^{2})y''+(\beta -\alpha -(\alpha +\beta +2)x)y'+n(n+\alpha +\beta +1)y=0.\,}
Jakobijevi polinomi definisani su pomoću hipergeometrijske funkcije :
P
n
(
α
,
β
)
(
z
)
=
(
α
+
1
)
n
n
!
2
F
1
(
−
n
,
1
+
α
+
β
+
n
;
α
+
1
;
1
−
z
2
)
,
{\displaystyle P_{n}^{(\alpha ,\beta )}(z)={\frac {(\alpha +1)_{n}}{n!}}\,_{2}F_{1}\left(-n,1+\alpha +\beta +n;\alpha +1;{\frac {1-z}{2}}\right),}
gde
(
α
+
1
)
n
{\displaystyle (\alpha +1)_{n}}
predstavlja Pohhamerov simbol . U tom slučaju razvojem se dobija:
P
n
(
α
,
β
)
(
z
)
=
Γ
(
α
+
n
+
1
)
n
!
Γ
(
α
+
β
+
n
+
1
)
∑
m
=
0
n
(
n
m
)
Γ
(
α
+
β
+
n
+
m
+
1
)
Γ
(
α
+
m
+
1
)
(
z
−
1
2
)
m
.
{\displaystyle P_{n}^{(\alpha ,\beta )}(z)={\frac {\Gamma (\alpha +n+1)}{n!\,\Gamma (\alpha +\beta +n+1)}}\sum _{m=0}^{n}{n \choose m}{\frac {\Gamma (\alpha +\beta +n+m+1)}{\Gamma (\alpha +m+1)}}\left({\frac {z-1}{2}}\right)^{m}~.}
Rodrigezova formula
uredi
Jakobijevi polinomi mogu da se definišu i pomoću Rodrigezove formule:
P
n
(
α
,
β
)
(
z
)
=
(
−
1
)
n
2
n
n
!
(
1
−
z
)
−
α
(
1
+
z
)
−
β
d
n
d
z
n
{
(
1
−
z
)
α
(
1
+
z
)
β
(
1
−
z
2
)
n
}
.
{\displaystyle P_{n}^{(\alpha ,\beta )}(z)={\frac {(-1)^{n}}{2^{n}n!}}(1-z)^{-\alpha }(1+z)^{-\beta }{\frac {d^{n}}{dz^{n}}}\left\{(1-z)^{\alpha }(1+z)^{\beta }(1-z^{2})^{n}\right\}~.}
Generirajuća funkcija
uredi
Generirajuća funkcija Jakobijevih polinoma je:
∑
n
=
0
∞
P
n
(
α
,
β
)
(
z
)
w
n
=
2
α
+
β
R
−
1
(
1
−
w
+
R
)
−
α
(
1
+
w
+
R
)
−
β
,
{\displaystyle \sum _{n=0}^{\infty }P_{n}^{(\alpha ,\beta )}(z)w^{n}=2^{\alpha +\beta }R^{-1}(1-w+R)^{-\alpha }(1+w+R)^{-\beta }~,}
gde
R
=
R
(
z
,
w
)
=
(
1
−
2
z
w
+
w
2
)
1
/
2
,
{\displaystyle R=R(z,w)={\big (}1-2zw+w^{2}{\big )}^{1/2}~,}
Relacije rekurzije za Jakobijeve polinome su:
2
n
(
n
+
α
+
β
)
(
2
n
+
α
+
β
−
2
)
P
n
(
α
,
β
)
(
z
)
=
(
2
n
+
α
+
β
−
1
)
{
(
2
n
+
α
+
β
)
(
2
n
+
α
+
β
−
2
)
z
+
α
2
−
β
2
}
P
n
−
1
(
α
,
β
)
(
z
)
−
2
(
n
+
α
−
1
)
(
n
+
β
−
1
)
(
2
n
+
α
+
β
)
P
n
−
2
(
α
,
β
)
(
z
)
,
n
=
2
,
3
,
…
{\displaystyle {\begin{aligned}&2n(n+\alpha +\beta )(2n+\alpha +\beta -2)P_{n}^{(\alpha ,\beta )}(z)\\&\qquad =(2n+\alpha +\beta -1){\Big \{}(2n+\alpha +\beta )(2n+\alpha +\beta -2)z+\alpha ^{2}-\beta ^{2}{\Big \}}P_{n-1}^{(\alpha ,\beta )}(z)\\&\qquad \qquad -2(n+\alpha -1)(n+\beta -1)(2n+\alpha +\beta )P_{n-2}^{(\alpha ,\beta )}(z)~,\quad n=2,3,\dots \end{aligned}}}
Nekoliko prvih polinoma je:
P
0
(
α
,
β
)
(
z
)
=
1
{\displaystyle P_{0}^{(\alpha ,\beta )}(z)=1}
P
1
(
α
,
β
)
(
z
)
=
1
2
[
2
(
α
+
1
)
+
(
α
+
β
+
2
)
(
z
−
1
)
]
{\displaystyle P_{1}^{(\alpha ,\beta )}(z)={\frac {1}{2}}\left[2(\alpha +1)+(\alpha +\beta +2)(z-1)\right]}
P
2
(
α
,
β
)
(
z
)
=
1
8
[
4
(
α
+
1
)
(
α
+
2
)
+
4
(
α
+
β
+
3
)
(
α
+
2
)
(
z
−
1
)
+
(
α
+
β
+
3
)
(
α
+
β
+
4
)
(
z
−
1
)
2
]
{\displaystyle P_{2}^{(\alpha ,\beta )}(z)={\frac {1}{8}}\left[4(\alpha +1)(\alpha +2)+4(\alpha +\beta +3)(\alpha +2)(z-1)+(\alpha +\beta +3)(\alpha +\beta +4)(z-1)^{2}\right]}
Izraz za realni argument
uredi
Za realno x Jakobijevi polinomi mogu da se pišu i kao:
P
n
(
α
,
β
)
(
x
)
=
∑
s
(
n
+
α
s
)
(
n
+
β
n
−
s
)
(
x
−
1
2
)
n
−
s
(
x
+
1
2
)
s
{\displaystyle P_{n}^{(\alpha ,\beta )}(x)=\sum _{s}{n+\alpha \choose s}{n+\beta \choose n-s}\left({\frac {x-1}{2}}\right)^{n-s}\left({\frac {x+1}{2}}\right)^{s}}
gde su s ≥ 0 i n -s ≥ 0, a za celobrojno n
(
z
n
)
=
Γ
(
z
+
1
)
Γ
(
n
+
1
)
Γ
(
z
−
n
+
1
)
,
{\displaystyle {z \choose n}={\frac {\Gamma (z+1)}{\Gamma (n+1)\Gamma (z-n+1)}},}
U gornjoj jednačini Γ (z ) je gama funkcija .
U specijalnom slučaju, kada su n , n +α , n +β , and
n +α +β nenegativni celi brojevi Jakobijevi polinomi mogu da se napišu kao:
P
n
(
α
,
β
)
(
x
)
=
(
n
+
α
)
!
(
n
+
β
)
!
×
∑
s
[
s
!
(
n
+
α
−
s
)
!
(
β
+
s
)
!
(
n
−
s
)
!
]
−
1
(
x
−
1
2
)
n
−
s
(
x
+
1
2
)
s
.
{\displaystyle {\begin{aligned}&P_{n}^{(\alpha ,\beta )}(x)=(n+\alpha )!(n+\beta )!\\&\qquad \times \sum _{s}\left[s!(n+\alpha -s)!(\beta +s)!(n-s)!\right]^{-1}\left({\frac {x-1}{2}}\right)^{n-s}\left({\frac {x+1}{2}}\right)^{s}.\end{aligned}}}
Jakobijevi polinomi za α > -1 i β > -1 zadovoljavaju uslov ortogonalnosti:
∫
−
1
1
(
1
−
x
)
α
(
1
+
x
)
β
P
m
(
α
,
β
)
(
x
)
P
n
(
α
,
β
)
(
x
)
d
x
=
2
α
+
β
+
1
2
n
+
α
+
β
+
1
Γ
(
n
+
α
+
1
)
Γ
(
n
+
β
+
1
)
Γ
(
n
+
α
+
β
+
1
)
n
!
δ
n
m
{\displaystyle {\begin{aligned}&\int _{-1}^{1}(1-x)^{\alpha }(1+x)^{\beta }P_{m}^{(\alpha ,\beta )}(x)P_{n}^{(\alpha ,\beta )}(x)\;dx\\&\quad ={\frac {2^{\alpha +\beta +1}}{2n+\alpha +\beta +1}}{\frac {\Gamma (n+\alpha +1)\Gamma (n+\beta +1)}{\Gamma (n+\alpha +\beta +1)n!}}\delta _{nm}\end{aligned}}}
Težinska funkcija je bila:
(
1
−
x
)
α
(
1
+
x
)
β
{\displaystyle (1-x)^{\alpha }(1+x)^{\beta }}
.
Oni nisu ortonormalni, a za normalizaciju:
P
n
(
α
,
β
)
(
1
)
=
(
n
+
α
n
)
.
{\displaystyle P_{n}^{(\alpha ,\beta )}(1)={n+\alpha \choose n}.}
Jakobijevi polinomi zadovoljavaju sledeće relacije simetrije:
P
n
(
α
,
β
)
(
−
z
)
=
(
−
1
)
n
P
n
(
β
,
α
)
(
z
)
;
{\displaystyle P_{n}^{(\alpha ,\beta )}(-z)=(-1)^{n}P_{n}^{(\beta ,\alpha )}(z);}
pa je
P
n
(
α
,
β
)
(
−
1
)
=
(
−
1
)
n
(
n
+
β
n
)
.
{\displaystyle P_{n}^{(\alpha ,\beta )}(-1)=(-1)^{n}{n+\beta \choose n}.}
Za x unutar intervala [-1, 1], asimptotska vrednost P n (α ,β ) za veliki n dan je:
P
n
(
α
,
β
)
(
cos
θ
)
=
n
−
1
/
2
cos
(
N
θ
+
γ
)
+
O
(
n
−
3
/
2
)
,
{\displaystyle P_{n}^{(\alpha ,\beta )}(\cos \theta )=n^{-1/2}\cos(N\theta +\gamma )+O(n^{-3/2})~,}
gde
k
(
θ
)
=
π
−
1
/
2
sin
−
α
−
1
/
2
θ
2
cos
−
β
−
1
/
2
θ
2
,
N
=
n
+
α
+
β
+
1
2
,
γ
=
−
(
α
+
1
2
)
π
2
,
{\displaystyle {\begin{aligned}k(\theta )&=\pi ^{-1/2}\sin ^{-\alpha -1/2}{\frac {\theta }{2}}\cos ^{-\beta -1/2}{\frac {\theta }{2}}~,\\N&=n+{\frac {\alpha +\beta +1}{2}}~,\\\gamma &=-(\alpha +{\frac {1}{2}}){\frac {\pi }{2}}~,\end{aligned}}}
Asimptote blizu ±1 dane su sa:
lim
n
→
∞
n
−
α
P
n
α
,
β
(
cos
z
n
)
=
(
z
2
)
−
α
J
α
(
z
)
,
lim
n
→
∞
n
−
β
P
n
α
,
β
(
cos
[
π
−
z
n
]
)
=
(
z
2
)
−
β
J
β
(
z
)
,
{\displaystyle {\begin{aligned}\lim _{n\to \infty }n^{-\alpha }P_{n}^{\alpha ,\beta }\left(\cos {\frac {z}{n}}\right)&=\left({\frac {z}{2}}\right)^{-\alpha }J_{\alpha }(z)~,\\\lim _{n\to \infty }n^{-\beta }P_{n}^{\alpha ,\beta }\left(\cos \left[\pi -{\frac {z}{n}}\right]\right)&=\left({\frac {z}{2}}\right)^{-\beta }J_{\beta }(z)~,\end{aligned}}}
Veza sa Vignerovom d-matricom
uredi
Jakobijevi polinomi povezani su sa Vignerovom D-matricom :
d
m
′
m
j
(
ϕ
)
=
[
(
j
+
m
)
!
(
j
−
m
)
!
(
j
+
m
′
)
!
(
j
−
m
′
)
!
]
1
/
2
(
sin
ϕ
2
)
m
−
m
′
(
cos
ϕ
2
)
m
+
m
′
P
j
−
m
(
m
−
m
′
,
m
+
m
′
)
(
cos
ϕ
)
.
{\displaystyle d_{m'm}^{j}(\phi )=\left[{\frac {(j+m)!(j-m)!}{(j+m')!(j-m')!}}\right]^{1/2}\left(\sin {\frac {\phi }{2}}\right)^{m-m'}\left(\cos {\frac {\phi }{2}}\right)^{m+m'}P_{j-m}^{(m-m',m+m')}(\cos \phi ).}