Ајнштајнова нотација

У линеарној алгебри, и посебно у областима физике које је користе, Ајнштајнова нотација или сумациона конвенција је конвенција у математичкој нотацији при којој се подразумева, осим уколико није експлицитно другачије напоменуто, сумација по индексима који су поновљени, па се симбол за суму изоставља. У општем случају, када се ради о коваријантним и контраваријантним величинама, сумација се подразумева по поновљеним горњим (контраваријантним) и доњим (коваријантним) индексима. Конвенција је добила име по Алберту Ајнштајну који ју је увео 1916. године у раду у коме је изложио основе опште теорије релативности како би упростио нотацију операција са тензорима.[1] Забележена је анегдота у којој се Ајнштајн нашалио у писму једном пријатељу:[2]

Направио сам велико откриће у математици; укинуо сам знак за сумацију сваки пут када се сумира по индексу који се два пута понавља...

ДефиницијаУреди

Често јавља случај када се сумирају променљиве по индексу који се понавља па је економично изоставити знак за сумацију:

 

У овој форми, где се ради о оба доња индекса, може се применити у општем случају када се ради о било каквој сумацији, мада то није уобичајено, већ се ова конвенција користи углавном када се сумирају компоненте тензора па се онда мора водити рачуна о начину на који се те компоненте трансформишу при промени базиса. Тада се коваријантне компоненте пишу са доњим индексом, а контраваријантне са горњим индексом, па правило у овом случају предвиђа да се подразумева сумирање само по поновљеном горњем и доњем индексу:

 

Ова разлика се може игнорисати једино када се ради у простору над пољем реалних бројева са фиксираним базисом, па се тада могу користити само доњи индекси.

ПримериУреди

Уколико је дат базис векторског простора  , вектор x у том базису може да се репрезентује бројном колоном чији су елементи координате вектора

 

Тада вектор x може да се изрази преко векторског збира базисних вектора помножених координатама, што у Ајнштајновој нотацији има облик

 

што би, у уобичајеној нотацији вектора као збира скалираних базисних вектора и игноришући контраваријантност координата, било

 

Стандардни скаларни производ вектора x и y, у апсолутном базису, у Ајнштајновој нотацији је

 

где су αi и βi координате вектора x и y, респективно, или уопштено за произвољан базис у унитарном простору

 

где је   метрички тензор, a звездица означава комплексно конјугован број. Конвенционално написано, ово у ствари значи

 

где је   скаларни производ i-тог и j-тог базисног вектора.

Ако је дата матрица са m врста и n колона, елемент матрице се може означити као   где горњи индекс означава i-ту врсту, а доњи j-ту колону. Матрично множење се тада може компактно изразити као

 

Види јошУреди

РеференцеУреди

  1. ^ Einstein, Albert (1997) [1916]. „B. Mathematical Aids to the Formulation of Generally Covariant Equations (енглески превод); B. Mathematische Hilfsmittel für Aufstellung allgemein kovarianter Gleichungen (оригинал)”. Ур.: A. J. Kox, Martin J. Klein, Robert Schulmann. The Foundation of the General Theory of Relativity (на језику: (језик: енглески) (језик: немачки)) (The Collected Papers of Albert Einstein, Volume 6 изд.). Princeton University Press. Архивирано из оригинала (PDF) на датум 29. 8. 2006. Приступљено 25. 12. 2010. 
  2. ^ Pais, Abraham (2005). „The Einstein Grossmann Collaboration”. Subtle Is the Lord: The Science and the Life of Albert Einstein (на језику: (језик: енглески)). Oxford University Press. стр. 216. ISBN 978-0-19-280672-7. Приступљено 25. 12. 2010. »I have made a great discovery in mathematics; I have suppressed the summation sign every time that the summation must be made over an index which occurs twice...« 

ЛитератураУреди

Спољашње везеУреди

  • Einstein Summation на Wolfram MathWorld (језик: енглески)
  • Einstein rule, SpringerLink Encyclopaedia of Mathematics (језик: енглески)