Површина — разлика између измена

Садржај обрисан Садржај додат
Autobot (разговор | доприноси)
м Dodavanje datuma u šablone za održavanje i/ili sredjivanje referenci
Autobot (разговор | доприноси)
м datum
Ред 30:
=== Површина круга ===
 
У 5. веку п. н. е, [[Хипократ са Хиоса]] је био први да покаже да је површина диска (региона обухваћеног кругом) пропорционална квадрату његовог пречника, као део његове [[Квадратура (математика)|квадратуре]] [[Хипокритов весец|Хипокритовог месеца]],<ref name="heath">{{citationcite book|first=Thomas L.|last=Heath|authorlink=Thomas Little Heath|title=A Manual of Greek Mathematics|publisher=Courier Dover Publications |year=2003|isbn=978-0-486-43231-1|url=https://books.google.com/books?id=_HZNr_mGFzQC&pg=PA121|pages=121–132}}</ref> али није идентификовао [[Пропорционалност (математика)|константу пропорционалности]]. [[Еудокс]] је исто тако у 5. веку п. н. е, утврдио да је површина диска пропорционална квадрату његовог пречника.<ref>{{cite book|url=http://www.stewartcalculus.com/media/8_home.php|title=Single variable calculus early transcendentals.|last=Stewart|first=James|publisher=Brook/Cole|year=2003|isbn=978-0-534-39330-4|edition=5th.|location=Toronto ON|quote=However, by indirect reasoning, Eudoxus (fifth century B.C.) used exhaustion to prove the familiar formula for the area of a circle: <math>A= \pi r^2.</math>|pages=3}}</ref>
 
Књига -{I}- [[Еуклидови Елементи|Еуклидових ''Елемената'']] се бави једнакошћу области између дводимензионалних фигура. Математичар [[Архимед]] је користио оруђа [[Еуклидова геометрија|Еуклидове геометрије]] да покаже да је област унутар круга једнака површини [[Правоугаони троугао|правоугаоног троугла]] чија база има дужину обима круга и чија висина је једнака полупречнику круга, у својој књизи ''[[Мерење круга]]''. (Обим је -{2{{pi}}''r''}-, и површина троугла је половина базе пута висина, из чега следи да је површина диска {{pi}}-{''r''}-<sup>2</sup>.) Архимед је апроксимирао вреднсот параметра π (и стога је површина круга јединичног полупречника) путем [[Површина круга|његовог метода удвостручавања]], у коме је уписивао регуларни троугао у круг, бележио његову површину, и затим удвостручавао број страна да би добио регуларни [[Шестоугао|хексагон]], након тога је понављао удвостручавање броја страна чиме је површина полигона постајала све ближа површини круга (и исто је радио са [[Тангентални полигон|описаним полигонима]]).
 
Швајцарски научник [[Јохан Хајнрих Ламберт]] је 1761. године доказао да је [[пи|π]], однос површине круга и квадрата његовог полупречника, и да је једнака [[ирационалан број|ирационалном]] броју, што значи да није једнака количнику било која два цела броја.<ref name=Arndt>{{cite book|last=Arndt|first=Jörg |last2=Haene l|first2=Christoph |title=Pi Unleashed| publisher=Springer-Verlag|year=2006|isbn=978-3-540-66572-4 |url= https://books.google.com/?id=QwwcmweJCDQC&printsec=frontcover#v=onepage&q&f=false |ref=harv |accessdate = 05. 06. 2013.}} English translation by Catriona and David Lischka.</ref> Године 1794. је француским математичар [[Адријен-Мари Лежандр]] доказао да је π<sup>2</sup> иранционална вредност; тиме је такође доказано да је π ирационално.<ref>{{citationcite book|last=Eves|first=Howard|title=An Introduction to the History of Mathematics|edition=6th|year=1990|publisher=Saunders|isbn=978-0-03-029558-4|pages=121}}</ref> Године 1882, немачки математичар [[Фердинанд фон Линдеман]] доказао да је π [[трансцендентан број|трансцендентна]] вредност (да није решење било које [[алгебарска једначина|полиномне једначине]] са рационалним коефицијентима), чиме је потврдио претпоставку [[Адријен-Мари Лежандр|Лежандра]] и Ојлера.<ref name=Arndt/>{{rp|p. 196}}
 
=== Површина троугла ===
Ред 103:
Међутим, исти паралелограм се исто тако може пресећи дуж [[дијагонала|дијагонале]] у два [[Подударност (геометрија)|подударна]] троугла, као што је приказано на слици с десне стране. Површина сваког [[троугао|троугла]] је половина површине паралелограма:<ref name=AF/>
:<math>A = \frac{1}{2}bh</math> <big> (троугао).</big>
Слични аргументи могу се користити за проналажење формуле за површину [[четвороугао|трапезоида]]<ref>{{citationcite book|title=Problem Solving Through Recreational Mathematics|first1=Bonnie|last1=Averbach|first2=Orin|last2=Chein|publisher=Dover|year=2012|isbn=978-0-486-13174-0|url=https://books.google.com/books?id=Dz_CAgAAQBAJ&pg=PA306|pages=306}}</ref> као и компликованијих [[многоугао|полигона]].<ref>{{citationcite book|title=Calculus for Scientists and Engineers: An Analytical Approach|first=K. D.|last=Joshi|publisher=CRC Press|year=2002|isbn=978-0-8493-1319-6|url=https://books.google.com/books?id=5SDcLHkelq4C&pg=PA43|pages=43}}</ref>
 
=== Површина закривљених облика ===