Биохемија — разлика између измена

Садржај обрисан Садржај додат
Tagging 6 dead links using Checklinks
м Враћене измене Serbian Nickmen (разговор) на последњу измену корисника Autobot
ознака: враћање
Ред 205:
[[Митохондрије]] (грчки: -{''mitos''}-, конац + -{''chondros''}-, гранула) су локације ћелијског дисања (аеробног метаболизма) код скоро свих еукариота.<ref name="mitosomes">{{cite journal|vauthors=Henze K, Martin W | title = Evolutionary biology: essence of mitochondria | journal = Nature | volume = 426 | issue = 6963 |date=November 2003 | pmid = 14614484 | doi = 10.1038/426127a | bibcode = 2003Natur.426..127H |pages=127-128}}</ref> Ове цитоплазмичне органеле, које су довољно велике да су их открили цитолози деветнаестог века, варирају у погледу величине и облика, али су углавном елипсоидне са димензијама од око 1,0 × 2,0 μm, попут бактерија. Еукариотске ћелије типично садрже око 2000 митохондрија, које заузимају око једне петине њихове тоталне запремине.<ref name="pmid26777473">{{cite journal|vauthors=Wiemerslage L, Lee D | title = Quantification of mitochondrial morphology in neurites of dopaminergic neurons using multiple parameters | journal = Journal of Neuroscience Methods | volume = 262 |date=March 2016 | pmid = 26777473 | pmc = 4775301 | doi = 10.1016/j.jneumeth.2016.01.008 |pages=56-65}}</ref>
 
Митохондрија, као што је првобитно показано електронско микроскопским изучавањима [[George Emil Palade|Ђеорга Палада]]<ref name="The Independent">{{cite news|title=Prof. George Palade: Nobel prize-winner whose work laid the foundations for modern molecular cell biology |publisher=The Independent |date=22. 10. 2008. |url=https://www.independent.co.uk/news/obituaries/prof-george-palade-nobel-prizewinner-whose-work-laid-the-foundations-for-modern-molecular-cell-biology-968560.html |accessdate=9. 2. 2011 |deadurl=yes |archiveurl=https://web.archive.org/web/20101019141647/http://www.independent.co.uk/news/obituaries/prof-george-palade-nobel-prizewinner-whose-work-laid-the-foundations-for-modern-molecular-cell-biology-968560.html |archivedate=19. 10. 2010 }} [http://journalisted.com/article/jx6y Archived]. ([[Internet Archive]] copy)</ref> и [[Fritiof S. Sjöstrand|Фритјофа Сјостранда]],<ref>{{Cite journal|url=https://books.google.com/?id=hHlmAAAAMAAJ&q=%22Sj%C3%B6strand,+Fritiof+Stig%22+AND+%221912%22&dq=%22Sj%C3%B6strand,+Fritiof+Stig%22+AND+%221912%22 | title = Leaders in American science |year=1963}}</ref><ref name="KI Bio">[http://ki.se/ki/jsp/polopoly.jsp?d=22576&l=sv Fritiof S. Sjöstrand - Biografi] {{webarchive |url=https://web.archive.org/web/20110718011200/http://ki.se/ki/jsp/polopoly.jsp?d=22576&l=sv |date=18. 7. 2011 }}, Karolinska Institutet 200 years </ref> има две мембране:<ref name="KI Hur">[http://ki.se/ki/jsp/polopoly.jsp?d=22576&a=55947&l=sv Hur anatomiska institutionen blev internationellt centrum för elektronmikroskopi] {{webarchive|url=https://web.archive.org/web/20110718011345/http://ki.se/ki/jsp/polopoly.jsp?d=22576&a=55947&l=sv |date=18. 7. 2011 }}</ref> глатку спољашњу мембрану и веома наборану унутрашњу мембрану чије се инвагнације називају [[Crista|кристама]]<ref name=Griparic2001>{{cite journal|last=Griparic|first=L|last2=van der Bliek|first2=AM|title=The many shapes of mitochondrial membranes.|journal=Traffic (Copenhagen, Denmark)|date=August 2003 |volume=2|issue=4 |pmid=11285133 |doi=10.1034/j.1600-0854.2001.1r008.x|pages=235-44}}</ref><ref>{{cite journal|last=Sjostrand|first=F |title=Systems of double membranes in the cytoplasm of certain tissue cells|journal=Nature|date=3. 1. 1953|volume=171 |doi=10.1038/171031a0|url=http://www.nature.com/nature/journal/v171/n4340/pdf/171031a0.pdf|accessdate=11. 1. 2015|pages=31-32}}</ref> (латински: -{''crests''}-). Митохондрија садржи два преградка, простор унутрашње мембране и простор унутрашњег матрикса. Ензими који катализују реакције дисања су компоненте било желатинозног матрикса или унутрашње митохондријске мембране. Ови ензими спрежу оксидацију нутријената којом се ослобађа енергија са синтезом аденозин трифосфата (АТП) при чему се конзумира енергија. [[Аденозин трифосфат]], након преноса до остатка ћелије, користи се за напајање разних процеса у којима се конзумира енергија.{{sfn|Campbell|Williamson|Heyden|2006|pp=}}
 
Митохондрије наликују на бактерије, и то не само у погледу величине. Њихов матрични простор садржи за митохондрије специфичне ДНК, РНК и рибозоме који учествују у синтези неколико митохондријских компоненти. Штавише, оне се репродукују путем бинарне фисије, и респираторни процеси које оне посредују у знатној мери подсећају на оне које се одвијају у модерним аеробним бактеријама. Ова запажања су довела до широко прихваћене хипотезе коју је заговарала [[Лин Маргулис]]<ref>{{cite journal|last=Schaechter |first=M |title=Lynn Margulis (1938–2011) |journal=Science |year=2012 |volume=335 |issue=6066 |doi=10.1126/science.1218027 |pmid=22267805|bibcode=2012Sci...335..302S |pages=302}}</ref><ref name="Chelsea Green">{{Cite book|url=https://books.google.com/books?id=31nEAgAAQBAJ&dq|title=Lynn Margulis: The Life and Legacy of a Scientific Rebel |publisher=Chelsea Green|year=2012|isbn=978-1603584470|editor-last=Sagan|editor-first=Dorion|location=White River Junction|pages=}}</ref> да су митохондрије еволуирале из првобитно самосталних грам негативних аеробних бактерија, које су формирале симбиотички однос са примордијалним анаеробним еукариотама. Хранљиве материје које еукариоте прилажу за бактеријску конзумацију се сматра да су вишеструко надокнађене високо ефикасним оксидативним метаболизмом који бактерије пружају еукариотама. Ова хипотеза је подржана запажањем да [[amoeba]] -{''[[Pelomyxa palustris]]''}-, једна од малобројних еукариота без митохондрија, живи у перманентном симбиотичком односу сличне природе са аеробним бактеријама.
Ред 290:
 
=== Липиди ===
{{ГлавниMain члнакarticle|Липид|Глицерол|Масна киселина}}
 
[[Датотека:Common lipids lmaps.sr.png|thumb|right|350п|Структура неколико широко заступљених липида. На врху су [[холестерол]] и [[олеинска киселина]].{{sfn|Stryer|2007|p=328}} Структура у средини је [[триглицерид]] који се састоји од [[олеат|олеоилног]], [[стеарат|стеароилног]], и [[палмитат|палмитоилног]] ланца везаног за [[глицерол]]ну основу. На дну је [[фосфолипид]], [[фосфатидилхолин]].{{sfn|Voet|Voet|2005|pp=}}]]
Ред 303:
 
=== Протеини ===
{{ГлавниMain чланакarticle|Протеин|Аминокиселина}}
[[Датотека:AminoAcidball.svg|thumbnail|250п|Општа стурктура α-аминокиселине, са [[Amin (hemija)|амино]] групом лево и [[карбонил]]ом групом десно.]]
 
Ред 318:
{{Protein structure summary}}
[[Датотека:Structural coverage of the human cyclophilin family.png|thumb|350п|right|Чланови протеинске фамилије представљени структурама [[isomerase|изомеразних]]<ref>{{cite book|title=Enzyme nomenclature, 1978 recommendations of the Nomenclature Committee of the International Union of Biochemistry on the nomenclature and classification of enzymes.|year=1979|publisher=Academic Press|location=New York|isbn=9780323144605|pages=}}</ref><ref name=gold>{{cite book|last=McNaught |first = A. D. | name-list-format = vanc | title = Compendium of Chemical Terminology | edition = 2nd |year=1997 | publisher = Blackwell Scientific Publications | location = Oxford |isbn=978-0-9678550-9-7 | url = http://goldbook.iupac.org |pages=}}</ref> [[protein domain|домена]]]]
Протеини који се уносе као храна обично прво бивају разложени до појединачних аминокиселина и дипептида у [[small intestine|танком цреву]], и затим апсорбовани. Они могу да буду поново састављени чиме се формирају нови протеини. Интермедијерни призводи [[Гликолиза|гликолизе]], [[Кребсов циклус|циклуса лимунске киселине]], и [[Put pentoza fosfata|пута пентозног фосфата]] могу да буду кориштени за формирање свих двадесет аминокиселина, и већина [[бактерија]] и [[Биљка|биљки]] поседује све неопходне ензиме за синтезу свих протеиногених аминокиселина. [[Човек|Људи]] и други [[сисари]], међутим, могу да синтетишу само око половине њих. Они не могу да синтетишу [[изолеуцин]], [[леуцин]], [[лизин]], [[метионин]], [[фенилаланин]], [[треонин]], [[триптофан]], и [[валин]]. То су [[Esencijalna aminokiselina|есенцијалне аминокиселине]], јер је есенцијално да се унесу путем исхране.<ref>{{cite journal|last=Young|first=V. R.|title=Adult amino acid requirements: the case for a major revision in current recommendations |journal=J. Nutr. |volume=124 |issue=8 Suppl |pages=1517S–1523S |year=1994 |pmid=8064412 |url=http://jn.nutrition.org/cgi/reprint/124/8_Suppl/1517S.pdf}}</ref><ref name="DRI">[http://fnic.nal.usda.gov/dietary-guidance/dietary-reference-intakes/dri-reports Dietary Reference Intakes: The Essential Guide to Nutrient Requirements] {{webarchive|url=https://web.archive.org/web/20140705140516/http://fnic.nal.usda.gov/dietary-guidance/dietary-reference-intakes/dri-reports |date=5. 7. 2014 }}. Institute of Medicine's Food and Nutrition Board. usda.gov</ref> Сисари поседују ензиме за синтезу [[аланин]]а, [[asparagine|аспарагина]], [[aspartate|аспартата]], [[cysteine|цистеина]], [[glutamate|глутамата]], [[glutamine|глутамина]], [[glycine|глицина]], [[proline|пролина]], [[serine|серина]], и [[tyrosine|тирозина]], које су стога неесенцијалне аминокиселине. Они додуше могу да синтетишу [[arginine|аргинин]] и [[histidine|хистидин]], али не могу да произведу довољне количине да се задовоље потребе младих и растућих животиња, тако да се оне често исто тако сматрају есенцијалним аминокиселинама.
 
Ако се амино група уклони са аминокиселине, она оставља за собом угљенични скелетон такозване α-[[кетокиселина|кетокиселине]]. Ензими који се називају [[transaminase|трансаминазе]] могу да са лакоћом пренесу амино групу са једне аминокиселине (претварајући је у α-кетокиселину) на другу α-кетокиселину (правећи од ње аминокиселину).<ref>{{cite journal|vauthors=Karmen A, Wroblewski F, Ladue JS | title = Transaminase activity in human blood | journal = The Journal of Clinical Investigation | volume = 34 | issue = 1 |year=1955| pmid = 13221663 | pmc = 438594 | doi = 10.1172/jci103055 |pages=126-31}}</ref><ref>{{cite journal|vauthors=Karmen A | title = A note on the spectrometric assay of glutamic-oxalacetic transaminase in human blood serum | journal = The Journal of Clinical Investigation | volume = 34 | issue = 1 |year=1955| pmid = 13221664 | pmc = 438594 | doi = 10.1172/JCI103055 |pages=131-3}}</ref><ref>{{cite journal|vauthors=Ladue JS, Wroblewski F, Karmen A | title = Serum glutamic oxaloacetic transaminase activity in human acute transmural myocardial infarction | journal = Science | volume = 120 | issue = 3117 |year=1954| pmid = 13195683 | doi = 10.1126/science.120.3117.497 |pages=497-9}}</ref> Ово је важна способност при биосинтези аминокиселина, јер се у многим синтетичким путевима, интермедијери из других биохемијских путева конвертују до α-киселинског скелетона, путем [[transamination|трансаминације]].<ref>{{cite book|last=Voet|first=Donald|last2=Voet|first2=Judith G.| title=Biochemistry | edition=3 | issue= | chapter = | publisher=Wiley |location= |year=2005 |isbn=9780471193500 | doi= | url=http://www.chem.upenn.edu/chem/research/faculty.php?browse=V |pages=}}</ref> Аминокиселине се затим могу повезати чиме се формира протеин.{{sfn|Fromm|Hargrove|2012|pp=279–292}}
 
Сличан процес се користи за разлагање протеина. Они се прво хидролизују у његове саставне аминокиселине. Слободни [[ammonia|амонијак]] (-{NH}-<sub>3</sub>), који постоји као [[ammonium|амонијум]] јон (-{NH}-<sub>4</sub><sup>+</sup>) у крви, је токсичан за животне форме. Подесан метод за његово излучивање стога мора да постоји. Различите тактике су развијене у процесу еволуције у различитим животињама, у зависности од потреба животиње. [[Unicellular|Једноћелијски]] организми једноставно испуштају амонијак у окружење. Слично томе, [[osteichthyes|кошљорибе]] могу да испусте амонијак у воду, где брзо бива разблажен. Сисари генерално претварају амонијак у [[Уреа|уреју]], путем [[urea cycle|циклуса уреје]].<ref name="Sherwood 2012">{{harvnb|Sherwood|2012|pp=558}}</ref>
Ред 524:
* {{cite journal|ref=harv|last=Ulveling|first=Damien|last2=Francastel|first2=Claire|last3=Hubé|first3=Florent|title=When one is better than two: RNA with dual functions |journal=Biochimie |year=2011|volume=93 |issue=4 |doi=10.1016/j.biochi.2010.11.004 |pmid=21111023 | url = https://www.researchgate.net/publication/49638925_When_one_is_better_than_two_RNA_with_dual_functions}}
* {{cite book|ref=harv|vauthors = Varki A, Cummings R, Esko J, Jessica F, Hart G, Marth J | title=Essentials of glycobiology | publisher=Cold Spring Harbor Laboratory Press |year=1999|isbn=978-0-87969-560-6 |url=https://books.google.com/books/about/Essentials_of_Glycobiology.html?id=lH72FFWIIpgC | work=Essentials of glycobiology}}
* {{cite book|ref=harv|last=Voet|first=D|last2=Voet|first2=JG|year=2005|title=Biochemistry |edition=3th |publisher=John Wiley & Sons Inc. |location=Hoboken, NJ |url=http://www.chem.upenn.edu/chem/research/faculty.php?browse=V |isbn=9780471193500 |doi= |deadurl=yes |archiveurl=https://web.archive.org/web/20070911065858/http://www.chem.upenn.edu/chem/research/faculty.php?browse=V |archivedate=11. 9. 2007 }}{{dead link|date=April 2019}}
* {{Cite book|ref=harv|author=Whiting, G.C |year=1970|chapter=Sugars |editor=A.C. Hulme |title=The Biochemistry of Fruits and their Products |volume=Volume 1|place=London & New York |publisher=Academic Press |postscript= |url =https://books.google.com/books/about/The_biochemistry_of_fruits_and_their_pro.html?id=KYDwAAAAMAAJ |isbn=978-0-12-361201-4|pages=}}
* {{cite book|ref=harv|author=Ziesak, Anne-Katrin |last2=Cram|first=Hans-Robert |url=https://books.google.com/books?id=ulN4rKWA8c4C&pg=PA169#v=onepage&q&f=false |title= Walter de Gruyter Publishers, 1749-1999|publisher=Walter de Gruyter & Co |year=1999|isbn=978-3110167412|pages=}}
Ред 539:
* [http://www.biochemweb.org/ Виртуелна библиотека Биохемије]
* [http://pubs.acs.org/journals/bichaw/ Америчко хемијско друштво]
* [http://www.springerlink.com/(e4qzs555c0etxh55cezltr55)/app/home/main.asp?referrer=default Европско Друштво Биохемичара]
* {{cite web|url=http://www.biochemistry.org/ |title = Biochemical Society}}
* [http://www.biochemweb.org/ The Virtual Library of Biochemistry and Cell Biology]