Infinitezimalni račun — разлика између измена

м
претварање ISBN веза у шаблон
м (претварање ISBN веза у шаблон)
 
'''Infinitezimalni račun''' je grana [[matematika|matematike]] koja se bavi [[funkcija]]ma, [[izvod]]ima, [[integral]]ima, [[limes]]ima i [[niz|beskonačnim nizovima]]. Proučava razumevanje i opisivanje promena merljivih [[varijabla|varijabli]]. Središnji koncept kojim se opisuje promena varijable je funkcija. Dve glavne grane su [[diferencijalni račun]] i [[integralni račun]]. Infinitezimalni račun je osnova [[matematička analiza|matematičke analize]].<ref>{{cite book|title=Calculus Concepts: An Applied Approach to the Mathematics of Change |author1=Donald R. Latorre |author2=John W. Kenelly |author3=Iris B. Reed |author4=Sherry Biggers |publisher=Cengage Learning |year=2007|id={{ISBN |0-618-78981-2}} |url=http://books.google.com/books?id=bQhX-3k0LS8C}}</ref>
 
Koristi se u [[nauka|nauci]], [[ekonomija|ekonomiji]], [[inženjerstvo|inženjerstvu]] itd. Služi za rešavanje mnogih matematičkih problema, koji se ne mogu rešiti [[algebra|algebrom]] ili [[geometrija|geometrijom]].
=== Dodatna literatura ===
{{Refbegin|2}}
* Larson, Ron, Bruce H. Edwards. "Calculus", 9th ed., Brooks Cole Cengage Learning. 2010. {{ISBN |978-0-547-16702-2}}.
* {{Cite book|author=McQuarrie, Donald A|title=Mathematical Methods for Scientists and Engineers|location=|publisher=University Science Books|year=2003|isbn=978-1-891389-24-5|pages=}}
* {{Cite book |ref= harv|last= Stewart|first= James|title= Calculus: Early Transcendentals|year=2008|url= |publisher= 6th ed., Brooks Cole Cengage Learning|location= |isbn=978-0-495-01166-8}}
* Thomas, George B., Maurice D. Weir, Joel Hass, Frank R. Giordano.. "Calculus", 11th ed., Addison-Wesley. 2008. {{ISBN |0-321-48987-X}}.
* Courant, Richard. {{ISBN |978-3-540-65058-4}}. ''Introduction to calculus and analysis 1.''
* Edmund Landau. {{ISBN |0-8218-2830-4}} ''Differential and Integral Calculus'', American Mathematical Society.
* Robert A. Adams. 1999. {{ISBN |978-0-201-39607-2}}. ''Calculus: A complete course''.
* Albers, Donald J.; Richard D. Anderson and Don O. Loftsgaarden, ed. (1986) ''Undergraduate Programs in the Mathematics and Computer Sciences: The 1985-1986 Survey'', Mathematical Association of America No. 7.
* {{Cite book|author=John Lane Bell|title=A Primer of Infinitesimal Analysis|location=|publisher=Cambridge University Press|year=1998|isbn=978-0-521-62401-5|pages=}} Uses synthetic differential geometry and nilpotent infinitesimals.
* Florian Cajori, "The History of Notations of the Calculus." ''Annals of Mathematics'', 2nd Ser., Vol. 25, No. 1 (Sep., 1923), pp.&nbsp;1–46.
* Leonid P. Lebedev and Michael J. Cloud: "Approximating Perfection: a Mathematician's Journey into the World of Mechanics, Ch. 1: The Tools of Calculus", Princeton Univ. Press, 2004.
* Cliff Pickover. 2003. {{ISBN |978-0-471-26987-8}}. ''Calculus and Pizza: A Math Cookbook for the Hungry Mind''.
* Michael Spivak. (September 1994). {{ISBN |978-0-914098-89-8}}.'' Calculus''. Publish or Perish publishing.
* Tom M. Apostol. 1967. {{ISBN |978-0-471-00005-1}}. ''Calculus, Volume 1, One-Variable Calculus with an Introduction to Linear Algebra''. Wiley.
* Tom M. Apostol. 1969. {{ISBN |978-0-471-00007-5}}. ''Calculus, Volume 2, Multi-Variable Calculus and Linear Algebra with Applications''. Wiley.
* Silvanus P. Thompson and Martin Gardner. 1998. {{ISBN |978-0-312-18548-0}}. ''Calculus Made Easy''.
* Mathematical Association of America. (1988). ''Calculus for a New Century; A Pump, Not a Filter'', The Association, Stony Brook, NY. ED 300 252.
* Thomas/Finney. 1996. {{ISBN |978-0-201-53174-9}}. ''Calculus and Analytic geometry 9th'', Addison Wesley.
* Weisstein, Eric W. [http://mathworld.wolfram.com/SecondFundamentalTheoremofCalculus.html "Second Fundamental Theorem of Calculus."] From MathWorld—A Wolfram Web Resource.
{{Refend}}