Komutativni dijagram — разлика између измена

39 бајтова уклоњено ,  пре 1 месеца
(.)
 
 
== Primeri ==
 
InU thelevom left diagramdijagramu, which expresseskoji theizražava [[Isomorphism_theorems#First_isomorphism_theorem|firstprvu isomorphismteoremu theoremizomorfizma]], commutativitykomutativnost oftrougla theznači triangleda means thatje <math>f = \tilde{f} \circ \pi</math>. In the right diagram,U commutativitydesnom ofdijagramu thekomutativnost squarekvadrata meansznači <math>h \circ f = k \circ g</math>.
{| style="width: 65%; margin: 1em auto 1em auto;"
|-
|}
 
Da bi dijagram ispod bio komutativan, moraju biti zadovoljene tri jednakosti:
In order for the diagram below to commute, three equalities must be satisfied:
 
# <math>r \circ h \circ g = H \circ G \circ l</math>
# <math>r \circ h = H \circ m</math>
 
Ovde, pošto prva jednakost sledi iz zadnje dve, dovoljno je pokazati da su (2) i (3) istinite da bi dijagram bio komutativan. Međutim, pošto jednakost (3) generalno ne proizilazi iz druge dve, u opštem slučaju nije dovoljno imati samo jednakosti (1) i (2) da bi se pokazalo da je dijagram komutativan.
Here, since the first equality follows from the last two, it suffices to show that (2) and (3) are true in order for the diagram to commute. However, since equality (3) generally does not follow from the other two, it is generally not enough to have only equalities (1) and (2) if one were to show that the diagram commutes.
 
{| style="margin: 1em auto 1em auto;"