37.630
измена
Нема описа измене |
|||
Поступак интегрисања може се најлакше разумети као замсли да се сабирају радови проматране силе по врло малим комадима укупнога пута, тако малима да се сила на поједином комадићу „не стигне” да се промени. Наравно, све док је број комадића коначан, сила ће се на свакоме бар мало променити (ако се стално мења), али та промена може бити у тако далекој децимали да је то у коначном резултату занемарљиво (те се узима било која вредност с појединог комадића пута). Ако то није случај, пут се може подијелити у још ситније комадиће пре збрајања радова, све док не добије резултат који је тачан у жељеном броју децималних места (што се проверава поређењем с наредном још ситнијом раздеобом пута). Такав се поступак зове [[Numerička integracija|нумеричко интегрисање]].
Процес уситњавања се може мисаоно наставити у недоглед, знајући да се тако добијају узастопни резултати са све већим бројем тачних цифара. Интеграл је (ако постоји) онај број (гранична вредност или лимес) којим се ти узастопни збирови све мањих комадића рада све више приближавају (уз довољно уситњавање пута, зброј радова је по вољи близу граничне вредности). А како показује математичка анализа, та тачна гранична вредност се може за многе конкретне силе израчунати на
:<math>W=\int_{0}^{A}ks\,\mathrm{d}s=k\int_{0}^{A}s\,\mathrm{d}s=k\left[\frac{s^{2}}{2}\right]_{0}^{A}=\frac{kA^{2}}{2}</math>
|