Фотодиода — разлика између измена

Садржај обрисан Садржај додат
.
Ред 1:
{{short description|Претвара светлост у струју}}
[[Датотека:Photodiode.jpg|мини|десно|100п|Фотодиода (увећана)]]
'''Фотодиода'''<ref>''Правопис српскога језика''. Матица српска. 2010. т. 84. стр. 89</ref> је [[диода]] са [[ПН спој]]ем који је приступачан [[свјетлост]]и. При паду свјетлости на ПН спој долази до тока [[електрон]]а. Због те особине, налази примјену као електронски [[сензор]]. Битна особина фотодиоде је да врши само (изузетно брзу) детекцију, а не врши улогу [[појачавач]]а, за разлику од [[фототранзистор]]а. Уколико поларишемо ПН спој инверзно, кроз диоду тече повећана инверзна струја. Повећање инверзне струје ''-{I}-''<sub>-{r}-</sub> кроз диоду је приближно сразмјерно повећању [[Осветљеност|освјетљености]] ''-{Е}-''. Типично повећање струје је око 100&nbsp;-{[[Нано|n]][[Ампер|A]]}-/-{[[lx]]}-.
 
'''Фотодиода'''<ref>''Правопис српскога језика''. Матица српска. 2010. т. 84. стр. 89</ref> је [[диода]] са [[ПН спој]]ем који је приступачан [[свјетлост]]и. При паду свјетлости на ПН спој долази до тока [[електрон]]а.<ref name="pears1">{{cite book|last1=Pearsall|first1=Thomas|title=Photonics Essentials, 2nd edition|publisher=McGraw-Hill|date=2010|url=https://www.mheducation.com/highered/product/photonics-essentials-second-edition-pearsall/9780071629355.html|isbn=978-0-07-162935-5|access-date=2021-02-25|archive-date=2021-08-17|archive-url=https://web.archive.org/web/20210817005021/https://www.mheducation.com/highered/product/photonics-essentials-second-edition-pearsall/9780071629355.html|url-status=dead}}</ref> Због те особине, налази примјену као електронски [[сензор]]. Битна особина фотодиоде је да врши само (изузетно брзу) детекцију, а не врши улогу [[појачавач]]а, за разлику од [[фототранзистор]]а. Уколико поларишемо ПН спој инверзно, кроз диоду тече повећана инверзна струја. Повећање инверзне струје ''-{I}-''<sub>-{r}-</sub> кроз диоду је приближно сразмјерно повећању [[Осветљеност|освјетљености]] ''-{Е}-''. Типично повећање струје је око 100&nbsp;-{[[Нано|n]][[Ампер|A]]}-/-{[[lx]]}-. Фотодиода је начињена од [[полупроводник|пулупроводног]] материјала као и обична диода.
Фотодиода је начињена од [[полупроводник|пулупроводног]] материјала као и обична диода.
{{рут}}
The package of a photodiode allows light (or infrared or ultraviolet radiation, or X-rays) to reach the sensitive part of the device. The package may include lenses or [[optical filter]]s. Devices designed for use specially as a photodiode use a [[PIN diode|PIN junction]] rather than a [[p–n junction]], to increase the speed of response. Photodiodes usually have a slower response time as their surface area increases. A photodiode is designed to operate in [[reverse bias]].<ref>{{cite book|author=Cox, James F. |title=Fundamentals of linear electronics: integrated and discrete|url=https://books.google.com/books?id=FbezraN9tvEC&pg=PA91|date=2001|publisher=Cengage Learning|isbn=978-0-7668-3018-9|pages=91–}}</ref> A [[solar cell]] used to generate electric [[solar power]] is a large area photodiode.
 
==Principle of operation==
 
A photodiode is a [[PIN diode|PIN structure]] or [[p–n junction]]. When a [[photon]] of sufficient energy strikes the diode, it creates an [[electron]]–[[electron hole|hole]] pair. This mechanism is also known as the inner [[photoelectric effect]]. If the absorption occurs in the junction's [[depletion region]], or one diffusion length away from it, these carriers are swept from the junction by the built-in electric field of the depletion region. Thus holes move toward the [[anode]], and electrons toward the [[cathode]], and a [[photocurrent]] is produced. The total current through the photodiode is the sum of the dark current (current that is generated in the absence of light) and the photocurrent, so the dark current must be minimized to maximize the sensitivity of the device.<ref>Tavernier, Filip and Steyaert, Michiel (2011) ''High-Speed Optical Receivers with Integrated Photodiode in Nanoscale CMOS''. Springer. {{ISBN|1-4419-9924-8}}. Chapter 3 ''From Light to Electric Current – The Photodiode''</ref>
 
To first order, for a given spectral distribution, the photocurrent is linearly proportional to the [[irradiance]].<ref name=haberlin>{{cite book |last1=Häberlin |first1=Heinrich |title=Photovoltaics: System Design and Practice |date=2012 |publisher=John Wiley & Sons |isbn=9781119978381 |pages=SA3–PA11–14 |url=https://books.google.com/books?id=w8k3aXBnDP4C&q=photocurrent+proportional-to-irradiance&pg=SA3-PA11 |access-date=19 April 2019}}</ref>
 
===Photoconductive mode===
 
In photoconductive mode the diode is [[p–n junction#Reverse bias|reverse biased]], that is, with the cathode driven positive with respect to the anode. This reduces the response time because the additional reverse bias increases the width of the depletion layer, which decreases the junction's [[capacitance]] and increases the region with an electric field that will cause electrons to be quickly collected. The reverse bias also creates [[Dark current (physics)|dark current]] without much change in the photocurrent.
 
Although this mode is faster, the photoconductive mode can exhibit more electronic noise due to dark current or avalanche effects.<ref>{{cite web | url =http://www.pacer.co.uk/Assets/Pacer/User/Photodiodes.pdf | title =Photodiode Application Notes – Excelitas – see note 4 | access-date =2014-11-13 | archive-url =https://web.archive.org/web/20141113175955/http://www.pacer.co.uk/Assets/Pacer/User/Photodiodes.pdf | archive-date =2014-11-13 | url-status =dead }}</ref> The leakage current of a good PIN diode is so low (&lt;1 nA) that the [[Johnson–Nyquist noise]] of the load resistance in a typical circuit often dominates.
 
==Related devices==
with structure optimized for operating with high reverse bias, approaching the reverse breakdown voltage. This allows each ''photo-generated'' carrier to be multiplied by [[avalanche breakdown]], resulting in internal gain within the photodiode, which increases the effective ''responsivity'' of the device.<ref name="pears2">{{cite book|last1=Pearsall|first1=Thomas|last2=Pollack|first2=Martin|title=Compound Semiconductor Photodiodes, Semiconductors and Semimetals, Vol 22D|publisher=Elsevier|date=1985|pages=173–245|url=https://www.sciencedirect.com/bookseries/semiconductors-and-semimetals/vol/22/part/PD|doi=10.1016/S0080-8784(08)62953-1}}</ref>[[File:IEEE 315-1975 (1993) 8.6.16.svg|100px|thumb|Electronic symbol for a phototransistor]]
A '''phototransistor''' is a light-sensitive transistor. A common type of phototransistor, the ''bipolar phototransistor'', is in essence a [[bipolar transistor]] encased in a transparent case so that [[light]] can reach the ''base–collector [[p–n junction|junction]]''. It was invented by Dr. [[John N. Shive]] (more famous for his [[Shive wave machine|wave machine]]) at Bell Labs in 1948<ref name="crystal-fire">{{cite book |year=1998
| title = Crystal Fire: The Invention of the Transistor and the Birth of the Information Age
| isbn = 9780393318517
|author1=Riordan, Michael |author1-link=Michael Riordan (physicist) |author2=Hoddeson, Lillian |author2-link=Lillian Hoddeson
}}</ref>{{rp|205}} but it was not announced until 1950.<ref>{{cite journal
| url = http://www.smecc.org/phototransistor.htm
| title = The phototransistor
| date = May 1950
| journal = Bell Laboratories Record
}}</ref>
 
A '''[[solaristor]]''' is a two-terminal gate-less phototransistor. A compact class of two-terminal phototransistors or solaristors have been demonstrated in 2018 by [[Catalan Institute of Nanoscience and Nanotechnology (ICN2)|ICN2]] researchers. The novel concept is a two-in-one power source plus transistor device that runs on solar energy by exploiting a memresistive effect in the flow of photogenerated carriers.<ref>{{Cite journal|last1=Pérez-Tomás|first1=Amador|last2=Lima|first2=Anderson|last3=Billon|first3=Quentin|last4=Shirley|first4=Ian|last5=Catalan|first5=Gustau|last6=Lira-Cantú|first6=Mónica|title=A Solar Transistor and Photoferroelectric Memory|journal=Advanced Functional Materials|volume=28|issue=17|pages=1707099|language=en|doi=10.1002/adfm.201707099|issn=1616-3028|year=2018|url=http://ddd.uab.cat/record/215011|hdl=10261/199048|hdl-access=free}}</ref>
 
== Unwanted and wanted photodiode effects ==
Any p–n junction, if illuminated, is potentially a photodiode. Semiconductor devices such as diodes, transistors and ICs contain p–n junctions, and will not function correctly if they are illuminated by unwanted electromagnetic radiation (light) of wavelength suitable to produce a photocurrent.<ref>Shanfield, Z. et al (1988) Investigation of radiation effects on semiconductor devices and integrated circuits, DNA-TR-88-221</ref><ref>Iniewski, Krzysztof (ed.) (2010), ''Radiation Effects in Semiconductors'', CRC Press, {{ISBN|978-1-4398-2694-2}}</ref> This is avoided by encapsulating devices in opaque housings. If these housings are not completely opaque to high-energy radiation (ultraviolet, X-rays, gamma rays), diodes, transistors and ICs can malfunction<ref>{{cite journal | last1 = Zeller | first1 = H.R. | year = 1995 | title = Cosmic ray induced failures in high power semiconductor devices | journal = Solid-State Electronics| volume = 38| issue = 12| pages = 2041–2046| doi=10.1016/0038-1101(95)00082-5| bibcode = 1995SSEle..38.2041Z }}</ref> due to induced photo-currents. Background radiation from the packaging is also significant.<ref>{{cite journal|title=Alpha-particle-induced soft errors in dynamic memories|journal=IEEE Transactions on Electron Devices|volume=26|issue=1|pages=2–9|doi=10.1109/T-ED.1979.19370|year=1979|last1=May|first1=T.C.|last2=Woods|first2=M.H.|bibcode=1979ITED...26....2M|s2cid=43748644}} Cited in {{cite journal|author=Baumann, R. C. |title=Soft errors in commercial integrated circuits|journal=[[International Journal of High Speed Electronics and Systems]]|volume=14|issue=2|pages=299–309|doi=10.1142/S0129156404002363|quote=alpha particles emitted from the natural radioactive decay of uranium, thorium, and daughter isotopes present as impurities in packaging materials were found to be the dominant cause of [soft error rate] in [dynamic random-access memories].|year=2004}}</ref> [[Radiation hardening]] mitigates these effects.
 
In some cases, the effect is actually wanted, for example to use [[LED]]s as light-sensitive devices (see [[LED as light sensor]]) or even for [[energy harvesting]], then sometimes called ''light-emitting and light-absorbing diodes'' (LEADs).<ref>{{cite journal |title=Halbleitertechnik Der LED fehlt der Doppelpfeil |author-first=Arno |author-last=Erzberger |journal=Elektronik |language=de |date=2016-06-21 |url=http://www.elektroniknet.de/elektronik/power/der-led-fehlt-der-doppelpfeil-131470.html |access-date=2017-02-14 |url-status=live |archive-url=https://web.archive.org/web/20170214181713/http://www.elektroniknet.de/elektronik/power/der-led-fehlt-der-doppelpfeil-131470.html |archive-date=2017-02-14}}</ref>
 
== Примјена ==
Линија 8 ⟶ 42:
 
== Материјал ==
 
Од материјала зависи осјетљивост у одређеном дијелу [[електромагнетски спектар|електромагнетског спектра]].<ref>Held. G, Introduction to Light Emitting Diode Technology and Applications, CRC Press, (Worldwide, 2008). Ch. 5 p. 116. {{ISBN|1-4200-7662-0}}</ref>
 
{| class="wikitable"
Линија 21 ⟶ 56:
| Оловни [[сулфид]] || < 1000—3500
|}
 
Binary materials, such as MoS<sub>2</sub>, and graphene emerged as new materials for the production of photodiodes.<ref>{{cite journal |last1=Yin |first1=Zongyou |last2=Li |first2=Hai |last3=Li |first3=Hong |last4=Jiang |first4=Lin |last5=Shi |first5=Yumeng |last6=Sun |first6=Yinghui |last7=Lu |first7=Gang |last8=Zhang |first8=Qing |last9=Chen |first9=Xiaodong |last10=Zhang |first10=Hua |title=Single-Layer MoS Phototransistors |journal=ACS Nano |date=21 December 2011 |volume=6 |issue=1 |pages=74–80 |doi=10.1021/nn2024557|pmid=22165908 |arxiv=1310.8066 |s2cid=27038582 }}</ref>
 
== Симбол ==
Линија 28 ⟶ 65:
== Предности и мане ==
Предности су ниска цијена и веома брз рад (у односу на фотоотпорник и фототранзистор). Мана је одсуство појачања, осим код лавинске фотодиоде.
 
== Референце ==
 
{{reflist}}
 
== Види још ==
Линија 37 ⟶ 70:
* [[Фотоотпорник]]
* [[Фототранзистор]]
 
== Референце ==
{{reflist}}
 
== Литература ==
{{refbegin|30em}}
* {{Citation |first=Bill |last=Doherty |url=https://www.microsemi.com/sites/default/files/micnotes/701.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://www.microsemi.com/sites/default/files/micnotes/701.pdf |archive-date=2022-10-09 |url-status=live |title=MicroNotes: PIN Diode Fundamentals |location=Watertown, MA |publisher=Microsemi Corp. |id=MicroNote Series 701}}
* {{cite web |url=http://www.herley.com/index.cfm?act=app_notes&notes=switches |title=Microwave Switches: Application Notes |website=Herley General Microwave |url-status=unfit |archive-url=https://web.archive.org/web/20131030102546/http://www.herley.com/index.cfm?act=app_notes&notes=switches |archive-date=2013-10-30}}
* {{cite book|url=https://books.google.com/books?id=PbYgBQAAQBAJ&pg=PA137|title=Electronic Inventions and Discoveries: Electronics from Its Earliest Beginnings to the Present Day|first=G. W. A.|last=Dummer|date=22 October 2013|publisher=Elsevier|isbn=9781483145211|access-date=14 April 2018|via=Google Books}}
* {{Cite web |url= https://www.discoverysemi.com/Product%20Pages/40G_Products/40G_Modules.php |title= Discovery semiconductor 40G InGaAs photodetector modules}}
* {{cite web |title = Si photodiodes {{!}} Hamamatsu Photonics |url= https://www.hamamatsu.com/eu/en/product/optical-sensors/photodiodes/si-photodiodes/index.html |website= hamamatsu.com |access-date= 2021-03-26}}
* {{Cite journal|last=Pérez-Tomás|first=Amador|last2=Lima|first2=Anderson|last3=Billon|first3=Quentin|last4=Shirley|first4=Ian|last5=Catalan|first5=Gustau|last6=Lira-Cantú|first6=Mónica|title=A Solar Transistor and Photoferroelectric Memory|journal=Advanced Functional Materials|volume=28|issue=17|pages=1707099|language=en|doi=10.1002/adfm.201707099|issn=1616-3028|year=2018|url=http://ddd.uab.cat/record/215011|hdl=10261/199048|hdl-access=free}}
* {{Cite web|url=https://www.rp-photonics.com/responsivity.html|title=Encyclopedia of Laser Physics and Technology - responsivity, photodetectors, photodiodes, sensitivity|last=Paschotta|first=Dr. Rüdiger|website=www.rp-photonics.com|language=en|access-date=2018-08-21}}
* {{cite book | title = Multielement Detection Systems for Spectrochemical Analysis | author = Kenneth W. Busch, Marianna A. Busch | publisher = Wiley-Interscience | year = 1990 | isbn = 0-471-81974-3 | url = https://books.google.com/?id=9H0W1J-Rku4C&pg=PA371&dq=responsivity }}
* {{Cite web|url=https://www.aps.org/publications/apsnews/200010/history.cfm|title=October 1897: The Discovery of the Electron|access-date=2018-09-19|archive-date=19 September 2018|archive-url=https://web.archive.org/web/20180919171705/https://www.aps.org/publications/apsnews/200010/history.cfm|url-status=live}}
* {{cite journal|last=Guarnieri|first=M.|date=2012|title=The age of vacuum tubes: Early devices and the rise of radio communications|journal=IEEE Ind. Electron. M.|volume=6|issue=1|pages=41–43|doi=10.1109/MIE.2012.2182822|s2cid=23351454}}
* {{cite journal|last=Guarnieri|first=M.|date=2012|title=The age of vacuum tubes: the conquest of analog communications|journal=IEEE Ind. Electron. M.|volume=6|issue=2|pages=52–54|doi=10.1109/MIE.2012.2193274|s2cid=42357863}}
* {{cite journal|last=Guarnieri|first=M.|date=2012|title=The age of Vacuum Tubes: Merging with Digital Computing|journal=IEEE Ind. Electron. M.|volume=6|issue=3|pages=52–55|doi=10.1109/MIE.2012.2207830|s2cid=41800914}}
 
{{refend}}
 
== Спољашње везе ==
{{Commons category|Photodiodes}}
{{Commonscat|Photo diodes}}
* <small>{{ен}}</small> [http://www.emant.com/324003.page Мјерење јачине свјетлости фотодиодом]
* [https://naadal.com/photodiode/ Photodiode I–V characteristics]
* [http://www.hamamatsu.com/resources/pdf/ssd/e02_handbook_si_photodiode.pdf Hamamatsu Application Note]
* [http://www.emant.com/324003.page Using the Photodiode to convert the PC to a Light Intensity Logger]
* [https://web.archive.org/web/20050205151917/http://www.fairchildsemi.com/an/AN/AN-3005.pdf Design Fundamentals for Phototransistor Circuits] (archived on February 5, 2005)
* [http://ece-www.colorado.edu/~bart/book/book/chapter4/ch4_7.htm Working principles of photodiodes] {{Webarchive|url=https://web.archive.org/web/20090212171128/http://ece-www.colorado.edu/~bart/book/book/chapter4/ch4_7.htm |date=2009-02-12 }}
* [https://web.archive.org/web/20160304182654/http://www.pacer.co.uk/assets/pacer/user/photodiodes.pdf Excelitas Application Notes on Pacer Website] (archived on March 4, 2016)
* [https://www.ieee.li/pdf/essay/pin_diode_handbook.pdf The PIN Diode Designers' Handbook]
* [https://www.skyworksinc.com/-/media/SkyWorks/Documents/Products/1-100/200480C.pdf PIN Limiter Diodes in Receiver Protectors], Skyworks application note
 
{{нормативна контрола}}