Топологија — разлика између измена

м
разне исправке; козметичке измене
м (Bot: Migrating 71 interwiki links, now provided by Wikidata on d:q42989 (translate me))
м (разне исправке; козметичке измене)
{{Друго значење 2}}
[[СликаДатотека:Möbius strip.jpg|десно|мини|[[Мебијусова трака]], објекат са само једном страном и једном ивицом; овакви објекти се проучавају у топологији.]]
'''Топологија''' (од грчког τόπoς „место“ и λόgoς „наука, знање, реч“) је једна од најмлађих грана [[математика|математике]], која је својим динамичним развојем током двадесетог века довела до решења неколико значајних класичних математичких проблема.
 
Топологија није примарна математичка грана. За њено проучавање неопходно је поседовање основних знања из [[математичка анализа|математичке анализе]] (укључујући [[теорија скупова|теорију скупова]]) и [[алгебра|алгебре]] (између осталог и из теорије категорија). Методе, језик и начин размишљања у топологији су за математичара са основним образовањем који им први пут приступа нови и другачији. Поједностављено речено, у топологији је најважније разумевање глобалних (геометријских) структура, док конкретна одстојања и конкретне реализације глобалних структура не играју улогу - квадрат веће и мање површине су тополошки еквивалентни (за тополога се не разликују), чак и било који квадрат и било који правоугаоник, заправо ма који многоугао и квадрат тополошки су еквивалентни, између њих се не прави разлика.
[[СликаДатотека:Mug and Torus morph.gif|мини|десно|250п|Континуална деформација ([[хомотопија]]) шоље у крофну ([[торус]]).]]
 
Сама топологија се дели на [[општа топологија|општу топологију]], која се бави самим тополошким просторима и [[алгебарска топологија|алгебарску топологију]], у којој се проучавају инваријанте, односно особине тополошких простора које се не мењају при непрекидним пресликавањима. У оквиру алгебарске топологије се налазе још [[геометријска топологија|геометријска]] и [[диференцијална топологија]], које се баве на пример многострукостима и диференцијалним пресликавањима.
 
== Историја ==
[[СликаДатотека:Konigsberg bridges.png|мини|лево|[[Кенигзбершки мостови]], чувени тополошки проблем.]]
Грана математике која се данас назива топологијом је настала изучавањем одређених геометријских питања. [[Леонард Ојлер|Ојлеров]] рад из [[1736]]. о ''[[Кенигзбершки мостови|Кенигзбершким мостовима]]'' спада међу прве тополошке резултате.
 
 
Нека је '''-{X}-''' неки скуп, и нека је '''''-{T}-''''' фамилија подскупова скупа '''-{X}-'''. Тада је '''''-{T}-''''' '''топологија''' на '''-{X}-''' ако
 
# И празан скуп и '''-{X}-''' припадају '''''-{T}-'''''.
# Свака унија елемената из '''''-{T}-''''' је елемент '''''-{T}-'''''.
1.572.075

измена