Rotaciono kretanje čvrstog tela

Rotacija ili spin je kružno kretanje objekta oko centralne ose. Ravna figura[1] može da se rotira bilo u smeru kazaljke na satu ili suprotno od kazaljke na satu oko okomite centralne ose koja preseca bilo gde unutar ili izvan figure. Čvrsta figura[2][3] ima beskonačan broj mogućih centralnih osa i pravaca rotacije.[4]

Сфера која се ротира (окреће) око осе

Pod krutim telom se podrazumeva zamišljen mehanički sistem od velikog broja materijalnih tačaka, čija se međusobna rastojanja ne menjaju tokom vremena bez obzira da li telo miruje ili se kreće. Tokom kretanja svaka njegova tačka opisuje svoju putanju.[5] U slučaju rotacionog kretanja sve tačke opisuju kružne putanje u ravnima koje su normalne na osu rotacije i čiji se centri nalaze na toj osi.[6] Iz ovog se može primetiti sledeće: a) tačke koje pripadaju osi rotacije ostaju nepokretne za sve vreme kretanja tela; b) da svaka tačka tela ima svoju putanju, brzinu i ubrzanje, usled čega ove veličine ne mogu da posluže za određivanje kretanja celog tela; c) da se radijus vektori svih tačaka (vektor povučen iz centra odgovarajuće kružnice u datu tačku) zaokrenu za isti ugao Δφ u toku rotacije. Ugao Δφ naziva se ugao zaokreta ili ugaoni pomeraj celog krutog tela. [5]

Ugaoni pomeraj уреди

Ugaoni pomeraj uzima se kao jedna od kinematičkih karakteristika rotacionog kretanja krutog tela, jer je isti za sve njegove tačke. Da bi smo definisali kretanje, vezaćemo za osu rotacije z-osu Dekartovog pravouglog koordinatnog sistema i smatraćemo da je smer rotacije tela pozitivan ako ugaoni pomeraj raste od nepomične ravni I u smeru koji je suprotan smeru obrtanja kazaljke na satu (za posmatrača koji gleda iz pozitivnog smera z-ose) a da je negativan – ako raste u smeru obrtanja kazaljke na satu.[6]

 
Rotaciono kretanje čvrstih tela

Pri rotaciji tela veličina ugaonog pomeraja Δφ raste u toku vremena po zakonu:

Δφ = φ(t)

Funkcija koja u odnosu na datu osu određuje položaj tela u svakom trenutku smatra se da je jednoznačna, neprekidna i diferencijabilna u toku celog kretanja.

Da bi ugaoni pomeraj definisao rotaciju tela mora se prikazati kao uslovni vektor[5]:

Δφ ⃗ = Δφ ⋅ ω ⃗0

Intenzitet vektora Δφ ⃗ je brojno jednak ugaonom pomeraju Δφ , pravac se poklapa sa osom rotacije a smer je na onu stranu odakle se vidi da se rotacija vrši u pozitivnom smeru. Vektor ω ⃗o je ort ose rotacije. Treba naglasiti da se samo vrlo mali ugaoni pomeraji 𝑑φ mogu tretirati kao vektori, jer podležu vektorskom sabiranju odnosno vektorskoj algebri[5]

Pored ugaonog pomeraja kinematičke karakteristike obrtanja krutog tela oko nepokretne ose su još i ugaona brzina[7][8] ω i ugaono ubrzanje[9] α.

Ugaona brzina уреди

Srednja ugaona brzina (za dati vremenski interval) jednaka je količniku priraštaja ugaonog pomeraja i vremenskog intervala u kojem je taj priraštaj nastao.[10]

ω ⃗sr = (Δφ ⃗)/Δt

Granična vrednost količnika Δφ ⃗ / Δ𝑡 , kada Δ𝑡 teži nuli , naziva se trenutna ugaona brzina ,

ω ⃗= lim Δt→0 (Δφ/Δt)

Prema ovoj jednačini se vidi da je ugaona brzina tela jednaka prvom izvodu vektora pomeraja po vremenu. Vektor ugaone brzine ω ⃗ ima intenzitet jednak 𝑑φ / 𝑑𝑡 , pravac duž ose rotacije tela, a smer joj se određuje po pravilu desnog zavrtnja.[6] Odnosno to je vektor kolinearan sa vektorom ugaonog pomeraja , pa se može predstaviti u obliku :

ω ⃗ = ω ⋅ ω ⃗0

Rotacija tela sa konstantnom ugaonom brzinom ω ⃗ = const naziva se jednako rotaciono kretanje – periodično kretanje.

Ugaono ubrzanje уреди

Definicija

Pri neravnomernom obrtanju tela oko nepokretne ose, ugaona brzina je promenljiva. Promena vektora ugaone brzine u nekom intervalu vremena Δ𝑡 naziva se srednje ugaono ubrzanje:[11]

α ⃗sr = (Δω ⃗)/Δt

Granična vrednost kojoj teži odnos (Δω ⃗)/Δt , kad Δ𝑡 teži nuli, naziva se trenutnim ugaonim ubrzanjem:

α ⃗ =lim(Δt⟶0)⁡((Δω ⃗)/Δt)= (dω ⃗)/dt = dω/dt ⋅ (ω0 ) ⃗

jer je ω ⃗ 0 = const.

Dakle, ugaono ubrzanje obrtnog tela jednako je prvom izvodu vektora ugaone brzine po vremenu.

Vektor ugaonog ubrzanja α ⃗ leži na osi rotacije kao i vektor ugaone brzine, a njegov smer zavisi od znaka priraštaja ugaone brzine. Ako je obrtanje tela ubrzano onda se smer vektora ugaonog ubrzanja poklapa sa smerom vektora ugaone brzine, a ako je obrtanje usporeno onda ovi vektori imaju suprotne smerove.[6]

Jedinica ugaone brzine je jedan radijan u sekundi ( rad/s) , dok je jedinica ugaonog ubrzanja radijan u sekundi na kvadrat ( rad/s2 ).

Primeri rotacionog kretanja tela уреди

Ravnomerno rotaciono kretanje tela уреди

Ako je ugaona brzina ω ⃗ tela koje rotira konstantna u nekom vremenskom intervalu, takvo rotaciono kretanje naziva se ravnomerno rotaciono . U tom slučaju, integraljenjem jednačine

ω ⃗ = (dφ ⃗)/dt = const

možemo dobiti zakon ravnomernog obrtanja tela. Pretpostavićemo da je u početnom trenutku 𝑡=0 vrednost ugla φ = φ0 , tada integraljenjem dobijamo:

φ = ω𝑡 + φ0

Prema tome ravnomerno rotaciono kretanje karakteriše se sledećim jednačinama: [5]

φ ⃗ = 0, ω ⃗ = const i φ = φ0 + ω𝑡 .

Ravnomerno ubrzano rotaciono kretanje tela уреди

Ako je vektor ugaonog ubrzanja α ⃗ = const u nekom vremenskom intervalu, takvo kretanje tela naziva se ravnomerno ubrzanim, pa na osnovu definicije imamo:

α ⃗ = (dω ⃗)/dt = (α0 ) ⃗ = const

Zakon ravnomerno promenljivog obrtanja tela dobijamo integraljenjem ove jednačine uz uslov da je u početnom trenutku 𝑡=0 ugaona brzina bila ω = ω0 :

ω = ω0 + α0 𝑡

ovu jednačinu možemo napisati u obliku

𝑑φ = ω0 𝑑𝑡 + αo 𝑡𝑑𝑡

posle njenog integraljenja sa istim početnim uslovima, dobijamo zakon promenljivog obrtanja krutog tela oko nepokretne ose u obliku

φ = ω0𝑡 + 1/2 α0t2 + φ0

Na osnovu dobijenih jednačina vidi se analogija formula sa ravnomernim i jednako ubrzanim translatornim kretanjem.[5]

Reference уреди

  1. ^ Kendall, D.G. (1984). „Shape Manifolds, Procrustean Metrics, and Complex Projective Spaces”. Bulletin of the London Mathematical Society. 16 (2): 81—121. doi:10.1112/blms/16.2.81. 
  2. ^ The Britannica Guide to Geometry, Britannica Educational Publishing, 2010, pp. 67–68.
  3. ^ Dupuis, Nathan Fellowes (1893). Elements of Synthetic Solid Geometry. Macmillan. стр. 53. Приступљено 1. 12. 2018. 
  4. ^ Robertson, Stewart Alexander (1984). Polytopes and Symmetry . Cambridge University Press. стр. 75. ISBN 9780521277396. 
  5. ^ а б в г д ђ Žižić, Božidar (1979). Kurs opšte fizike - fizička mehanika. Beograd: Naučna knjiga. стр. 37. ISBN 06-803/1. 
  6. ^ а б в г drDragovan V. Blagojević, drMilan L. Gligorić (1977). Mehanika. Beograd: Radnički univerzitet "Novi Beograd". стр. 244. ISBN 413-241/74-02. 
  7. ^ Cummings, Karen; Halliday, David (2007). Understanding physics. New Delhi: John Wiley & Sons Inc., authorized reprint to Wiley – India. стр. 449, 484, 485, 487. ISBN 978-81-265-0882-2. 
  8. ^ Hibbeler, Russell C. (2009). Engineering Mechanics. Upper Saddle River, New Jersey: Pearson Prentice Hall. стр. 314, 153. ISBN 978-0-13-607791-6. (EM1)
  9. ^ „Rotational Variables”. LibreTexts. MindTouch. 18. 10. 2016. Приступљено 1. 7. 2020. 
  10. ^ Singh, Sunil K. Angular Velocity. Rice University. 
  11. ^ Knudsen, Jens M.; Hjorth, Poul G. (2000). Elements of Newtonian mechanics: including nonlinear dynamics (3 изд.). Springer. стр. 96. ISBN 3-540-67652-X. 

Literatura уреди

Spoljašnje veze уреди