Функција индикатор

У математици, функција индикатор или карактеристична функција је функција дефинисана на скупу , која означава припадност елемента подскупу од .

График функције индикатора дводимензионог скупа.

Индикатор функција подскупа скупа је функција

дефинисана као

Ајверсонове заграде дозвољавају следећу нотацију: .

Напомене о нотацији и терминологији

уреди

Израз карактеристична функција има другачије (неповезано) значење у теорији вероватноће. Због овога се у теорији вероватноће за овај појам готово увек користи израз функција индикатор, док математичари у другим областима чешће користе израз карактеристична функција за описивање функције која означава припадност скупу.

Основна својства

уреди

Пресликавање које повезује подскуп   скупа   са својом функцијом индикатором   је инјективно.

У следећим формулама, тачка представља множење, 1·1 = 1, 1·0 = 0 итд. "+" и "−" представљају сабирање и одузимање. " " и " " су пресек и унија.

Ако су   и   два подскупа од  , онда

 
 

а комплемент функције индикатора за A, тј. AC је:

 

Општије, претпоставимо да је   колекција подскупова од  . За свако  ,

 

је јасно производ нула и јединица. Овај производ има вредност   тачно за оне   који не припадају ни једном од скупова  , а има вредност   иначе. То јест

 

Ако распишемо производ са елве стране, добијамо,

 

где је   кардиналност од  . Ово је један облик принципа укључења-искључења.

Као што се види у претходном примеру, функција индикатор је корисна као средство нотације у комбинаторици. Ова нотација се користи и у другим областима, на пример у теорији вероватноће: ако је   простор вероватноће са мером вероватноће   и   је мерљиви скуп, онда   постаје случајна променљива чија је очекивана вредност једнака вероватноћи  

 

Овај идентитет је једноставан доказ Марковљеве неједнакости.

Литература

уреди
  • Folland, G.B.; Real Analysis: Modern Techniques and Their Applications, 2nd ed, John Wiley & Sons, Inc., 1999.
  • Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7. Section 5.2: Indicator random variables, pp.94-99.
  • Martin Davis ed. (1965), The Undecidable, Raven Press Books, Ltd., New York.
  • Stephen Kleene, (1952), Introduction to Metamathematics, Wolters-Noordhoff Publishing and North Holland Publishing Company, Netherlands, Sixth Reprint with corrections 1971.
  • George Boolos, John P. Burgess, Richard C. Jeffrey (2002), Cambridge University Press, Cambridge UK, ISBN 0-521-00758-5.
  • Lotfi A. Zadeh, 1965, "Fuzzy sets". Information and Control 8: 338–353. [1]
  • Joseph Goguen, 1967, "L-fuzzy sets". Journal of Mathematical Analysis and Applications 18: 145–174