Датотека:VFPt metal balls largesmall potential+contour.svg

Originalna datoteka(SVG datoteka, nominalno 800 × 600 piksela, veličina: 183 kB)

Opis izmene

Opis
English: Electric field around a large and a small conducting sphere at opposite electric potential. The shape of the field lines is computed exactly, using the method of image charges with an infinite series of charges inside the two spheres. Field lines are always orthogonal to the surface of each sphere. In reality, the field is created by a continuous charge distribution at the surface of each sphere, indicated by small plus and minus signs. The electric potential is depicted as background color with yellow at 0V together with equipotential lines.
Datum
Izvor Sopstveno delo
Autor Geek3
Ostale verzije
SVG genesis
InfoField
 
The SVG code is valid.
 
This plot was created with VectorFieldPlot.
 
This file uses embedded text.
Izvorni kod
InfoField

Python code

# paste this code at the end of VectorFieldPlot 3.1
# https://commons.wikimedia.org/wiki/User:Geek3/VectorFieldPlot
u = 100.0
doc = FieldplotDocument('VFPt_metal_balls_largesmall_potential+contour',
    commons=True, width=800, height=600, unit=u)

# define spheres with position and radius
s1 = {'c':sc.array([-1.0, 0.]), 'r':1.5}
s2 = {'c':sc.array([2.0, 0.]), 'r':0.5}
spheres = [s1, s2]

def U_sphere(sphere, charges):
    f = Field([ ['monopole', {'x':c['p'][0], 'y':c['p'][1], 'Q':c['Q']}] for c in charges])
    return sc.mean([f.V(sphere['c'] + sphere['r'] * array((cos(phi), sin(phi))))
        for phi in sc.linspace(0, 2*pi, 64, endpoint=False)])

def Q_sphere(isphere, charges):
    return sum([c['Q'] for c in charges if c['i'] == isphere])

# compute series of charges https://dx.doi.org/10.2174/1874183500902010032
def mirrored_charges(p, Q, isphere, spheres, Qmin):
    '''
    Recursive function. Returns list of mirrored charges for n spheres
    '''
    if fabs(Q) < Qmin:
        return []
    charges = [{'p':p, 'Q':Q, 'i':isphere}]
    for i, s in enumerate(spheres):
        if i != isphere:
            pnew = s['c'] + (p - s['c']) * (s['r'] / vabs(p - s['c']))**2
            Qnew = -Q * s['r'] / vabs(p - s['c'])
            charges += mirrored_charges(pnew, Qnew, i, spheres, Qmin)
    return charges

charges_raw = [mirrored_charges(s['c'], 1., si, spheres, 1e-4) for si,s in enumerate(spheres)]
# Use charge normalization from paper above
# Here one can also solve for charge conditions such as neutrality
matrixU = [ [U_sphere(s, cs) for cs in charges_raw] for s in spheres]
matrixQ = [ [Q_sphere(si, cs) for cs in charges_raw] for si in range(len(spheres))]
U0, U1 = 1., -1
charge_factors = sc.linalg.solve(matrixU, [U0, U1])
for il in range(len(charges_raw)):
    for ic in range(len(charges_raw[il])):
        charges_raw[il][ic]['Q'] *= charge_factors[il]

charges = [c for cl in charges_raw for c in cl]
charges = sorted(charges, key=lambda x: -fabs(x['Q']))
for si, s in enumerate(spheres):
    s['U'] = U_sphere(s, charges)
    s['Q'] = Q_sphere(si, charges)
    #print('sphere', si, s, 'U =', s['U'], 'Q =', s['Q'])
print('using', len(charges), 'mirror charges.')

field = Field([ ['monopole', {'x':c['p'][0], 'y':c['p'][1], 'Q':c['Q']}] for c in charges])

def pot(xy):
    for s in spheres:
        if vabs(xy - s['c']) <= s['r']:
            return s['U']
    return field.V(xy)

doc.draw_scalar_field(func=pot, cmap=doc.cmap_AqYlFs, vmin=U1, vmax=U0)
doc.draw_contours(func=pot, linewidth=1, linecolor='#444444',
    levels=sc.linspace(U1, U0, 17)[1:-1])

# draw symbols
#for c in charges:
#    doc.draw_charges(Field([ ['monopole', {'x':c[0][0], 'y':c[0][1], 'Q':c[1]}] ]),
#        scale=0.6*sqrt(fabs(c[1])))

gradr = doc.draw_object('linearGradient', {'id':'rod_shade', 'x1':0, 'x2':0,
    'y1':0, 'y2':1, 'gradientUnits':'objectBoundingBox'}, group=doc.defs)
for col, of in (('#666', 0), ('#ddd', 0.6), ('#fff', 0.7), ('#ddd', 0.8),
    ('#888', 1)):
    doc.draw_object('stop', {'offset':of, 'stop-color':col}, group=gradr)
gradb = doc.draw_object('radialGradient', {'id':'metal_spot', 'cx':'0.53',
    'cy':'0.54', 'r':'0.55', 'fx':'0.65', 'fy':'0.7',
    'gradientUnits':'objectBoundingBox'}, group=doc.defs)
for col, of in (('#fff', 0), ('#e7e7e7', 0.15), ('#ddd', 0.25),
    ('#aaa', 0.7), ('#888', 0.9), ('#666', 1)):
    doc.draw_object('stop', {'offset':of, 'stop-color':col}, group=gradb)

ball_charges = []
for ib, s in enumerate(spheres):
    ball = doc.draw_object('g', {'id':'metal_ball{:}'.format(ib+1),
        'transform':'translate({:.3f},{:.3f})'.format(*(s['c'])),
        'style':'fill:none; stroke:#000;stroke-linecap:square', 'opacity':1})
    
    # draw rods
    if ib == 0:
        x1, x2 = -4.1 - s1['c'][0], -0.9 * s1['r']
    else:
        x1, x2 = 0.9 * s2['r'], 4.1 - s2['c'][0]
    doc.draw_object('rect', {'x':x1, 'width':x2-x1,
        'y':-0.1/1.2+0.01, 'height':0.2/1.2-0.02,
        'style':'fill:url(#rod_shade); stroke-width:0.02'}, group=ball)
    
    # draw metal balls
    doc.draw_object('circle', {'cx':0, 'cy':0, 'r':s['r'],
        'style':'fill:url(#metal_spot); stroke-width:0.02'}, group=ball)
    ball_charges.append(doc.draw_object('g',
        {'style':'stroke-width:0.02'}, group=ball))

def startpath1(t):
    phi = 2. * pi * t
    return s2['c'] + 1.5 * array([cos(phi), sin(phi)])

def startpath2(t):
    phi = 2. * pi * t
    return s1['c'] + s1['r'] * array([cos(phi), -sin(phi)])
    
nlines1 = 16
startpoints = Startpath(field, startpath1).npoints(nlines1)
nlines2 = 14
startpoints += Startpath(field, startpath2, t0=0.195, t1=1-0.195).npoints(nlines2)

for ip, p0 in enumerate(startpoints):
    line = FieldLine(field, p0, directions='both', maxr=7.,
        bounds_func=lambda xy: max([s['r'] - vabs(xy-s['c']) for s in [s1, s2]]))
    
    # draw little charge signs near the surface
    path_minus = 'M {0:.5f},0 h {1:.5f}'.format(-2./u, 4./u)
    path_plus = 'M {0:.5f},0 h {1:.5f} M 0,{0:.5f} v {1:.5f}'.format(-2./u, 4./u)
    for si in range(2):
        sphere = [s1, s2][si]
        
        # check if fieldline ends inside the sphere
        for ci in range(2):
            if (vabs(line.get_position(ci) - sphere['c']) < sphere['r'] and
                vabs(line.get_position(1-ci) - sphere['c']) > sphere['r']):
                # find the point where the field line cuts the surface
                t = optimize.brentq(lambda t: vabs(line.get_position(t)
                    - sphere['c']) - sphere['r'], 0., 1.)
                pr = line.get_position(t) - sphere['c']
                cpos = (-0.06 + 0.96 * sphere['r']) * vnorm(pr)
                doc.draw_object('path', {'stroke':'black', 'd':
                    [path_plus, path_minus][ci],
                    'transform':'translate({:.5f},{:.5f})'.format(
                        round(u*cpos[0])/u, round(u*cpos[1])/u)},
                        group=ball_charges[si])
    
    arrow_d = 2.0
    of = {'start':0.5 + s1['r'] / arrow_d, 'leave_image':0.45,
          'enter_image':0.5, 'end':0.5 + s2['r'] / arrow_d}
    ar_st = {'dist':arrow_d, 'offsets':of}
    if ip >= nlines1:
        ar_st = {'potential':pot, 'at_potentials':[0.55*U0]}
    ar_st['scale'] = 1.2
    doc.draw_line(line, arrows_style=ar_st)
doc.write()

Licenciranje

Ja, nosilac autorskog prava nad ovim delom, objavljujem isto pod sledećom licencom:
w:sr:Krijejtiv komons
autorstvo deliti pod istim uslovima
Dozvoljeno je:
  • da delite – da umnožavate, raspodeljujete i prenosite delo
  • da prerađujete – da preradite delo
Pod sledećim uslovima:
  • autorstvo – Morate da date odgovarajuće zasluge, obezbedite vezu ka licenci i naznačite da li su izmene napravljene. Možete to uraditi na bilo koji razuman manir, ali ne na način koji predlaže da licencator odobrava vas ili vaše korišćenje.
  • deliti pod istim uslovima – Ako izmenite, preobrazite ili dogradite ovaj materijal, morate podeliti svoje doprinose pod istom ili kompatibilnom licencom kao original.

Natpisi

Dodajte objašnjenje u jednom redu o tome šta ova datoteka predstavlja
Electric field around a large and a small sphere at opposite potential

Stavke prikazane u ovoj datoteci

prikazuje

Neka vrednost bez stavke na projektu Vikipodaci

skraćeno ime autora Serbian (transliteracija): Geek3
Vikimedija Serbian (transliteracija): Geek3

status autorskog prava Serbian (transliteracija)

zaštićeno autorskim pravima Serbian (transliteracija)

izvor datoteke Serbian (transliteracija)

sopstveno delo Serbian (transliteracija)

30. maj 2020

Istorija datoteke

Kliknite na datum/vreme da biste videli tadašnju verziju datoteke.

Datum/vremeMinijaturaDimenzijeKorisnikKomentar
trenutna14:37, 30. maj 2020.Minijatura za verziju na dan 14:37, 30. maj 2020.800 × 600 (183 kB)Geek3Uploaded own work with UploadWizard

Sledeća stranica koristi ovu datoteku:

Globalna upotreba datoteke

Drugi vikiji koji koriste ovu datoteku:

Metapodaci