Датотека:VFPt metal balls largesmall potential+contour.svg

Оригинална датотека(SVG датотека, номинално 800 × 600 пиксела, величина: 183 kB)

Опис измене

Опис
English: Electric field around a large and a small conducting sphere at opposite electric potential. The shape of the field lines is computed exactly, using the method of image charges with an infinite series of charges inside the two spheres. Field lines are always orthogonal to the surface of each sphere. In reality, the field is created by a continuous charge distribution at the surface of each sphere, indicated by small plus and minus signs. The electric potential is depicted as background color with yellow at 0V together with equipotential lines.
Датум
Извор Сопствено дело
Аутор Geek3
Остале верзије
SVG genesis
InfoField
 
The SVG code is valid.
 
This plot was created with VectorFieldPlot.
 
This file uses embedded text.
Изворни код
InfoField

Python code

# paste this code at the end of VectorFieldPlot 3.1
# https://commons.wikimedia.org/wiki/User:Geek3/VectorFieldPlot
u = 100.0
doc = FieldplotDocument('VFPt_metal_balls_largesmall_potential+contour',
    commons=True, width=800, height=600, unit=u)

# define spheres with position and radius
s1 = {'c':sc.array([-1.0, 0.]), 'r':1.5}
s2 = {'c':sc.array([2.0, 0.]), 'r':0.5}
spheres = [s1, s2]

def U_sphere(sphere, charges):
    f = Field([ ['monopole', {'x':c['p'][0], 'y':c['p'][1], 'Q':c['Q']}] for c in charges])
    return sc.mean([f.V(sphere['c'] + sphere['r'] * array((cos(phi), sin(phi))))
        for phi in sc.linspace(0, 2*pi, 64, endpoint=False)])

def Q_sphere(isphere, charges):
    return sum([c['Q'] for c in charges if c['i'] == isphere])

# compute series of charges https://dx.doi.org/10.2174/1874183500902010032
def mirrored_charges(p, Q, isphere, spheres, Qmin):
    '''
    Recursive function. Returns list of mirrored charges for n spheres
    '''
    if fabs(Q) < Qmin:
        return []
    charges = [{'p':p, 'Q':Q, 'i':isphere}]
    for i, s in enumerate(spheres):
        if i != isphere:
            pnew = s['c'] + (p - s['c']) * (s['r'] / vabs(p - s['c']))**2
            Qnew = -Q * s['r'] / vabs(p - s['c'])
            charges += mirrored_charges(pnew, Qnew, i, spheres, Qmin)
    return charges

charges_raw = [mirrored_charges(s['c'], 1., si, spheres, 1e-4) for si,s in enumerate(spheres)]
# Use charge normalization from paper above
# Here one can also solve for charge conditions such as neutrality
matrixU = [ [U_sphere(s, cs) for cs in charges_raw] for s in spheres]
matrixQ = [ [Q_sphere(si, cs) for cs in charges_raw] for si in range(len(spheres))]
U0, U1 = 1., -1
charge_factors = sc.linalg.solve(matrixU, [U0, U1])
for il in range(len(charges_raw)):
    for ic in range(len(charges_raw[il])):
        charges_raw[il][ic]['Q'] *= charge_factors[il]

charges = [c for cl in charges_raw for c in cl]
charges = sorted(charges, key=lambda x: -fabs(x['Q']))
for si, s in enumerate(spheres):
    s['U'] = U_sphere(s, charges)
    s['Q'] = Q_sphere(si, charges)
    #print('sphere', si, s, 'U =', s['U'], 'Q =', s['Q'])
print('using', len(charges), 'mirror charges.')

field = Field([ ['monopole', {'x':c['p'][0], 'y':c['p'][1], 'Q':c['Q']}] for c in charges])

def pot(xy):
    for s in spheres:
        if vabs(xy - s['c']) <= s['r']:
            return s['U']
    return field.V(xy)

doc.draw_scalar_field(func=pot, cmap=doc.cmap_AqYlFs, vmin=U1, vmax=U0)
doc.draw_contours(func=pot, linewidth=1, linecolor='#444444',
    levels=sc.linspace(U1, U0, 17)[1:-1])

# draw symbols
#for c in charges:
#    doc.draw_charges(Field([ ['monopole', {'x':c[0][0], 'y':c[0][1], 'Q':c[1]}] ]),
#        scale=0.6*sqrt(fabs(c[1])))

gradr = doc.draw_object('linearGradient', {'id':'rod_shade', 'x1':0, 'x2':0,
    'y1':0, 'y2':1, 'gradientUnits':'objectBoundingBox'}, group=doc.defs)
for col, of in (('#666', 0), ('#ddd', 0.6), ('#fff', 0.7), ('#ddd', 0.8),
    ('#888', 1)):
    doc.draw_object('stop', {'offset':of, 'stop-color':col}, group=gradr)
gradb = doc.draw_object('radialGradient', {'id':'metal_spot', 'cx':'0.53',
    'cy':'0.54', 'r':'0.55', 'fx':'0.65', 'fy':'0.7',
    'gradientUnits':'objectBoundingBox'}, group=doc.defs)
for col, of in (('#fff', 0), ('#e7e7e7', 0.15), ('#ddd', 0.25),
    ('#aaa', 0.7), ('#888', 0.9), ('#666', 1)):
    doc.draw_object('stop', {'offset':of, 'stop-color':col}, group=gradb)

ball_charges = []
for ib, s in enumerate(spheres):
    ball = doc.draw_object('g', {'id':'metal_ball{:}'.format(ib+1),
        'transform':'translate({:.3f},{:.3f})'.format(*(s['c'])),
        'style':'fill:none; stroke:#000;stroke-linecap:square', 'opacity':1})
    
    # draw rods
    if ib == 0:
        x1, x2 = -4.1 - s1['c'][0], -0.9 * s1['r']
    else:
        x1, x2 = 0.9 * s2['r'], 4.1 - s2['c'][0]
    doc.draw_object('rect', {'x':x1, 'width':x2-x1,
        'y':-0.1/1.2+0.01, 'height':0.2/1.2-0.02,
        'style':'fill:url(#rod_shade); stroke-width:0.02'}, group=ball)
    
    # draw metal balls
    doc.draw_object('circle', {'cx':0, 'cy':0, 'r':s['r'],
        'style':'fill:url(#metal_spot); stroke-width:0.02'}, group=ball)
    ball_charges.append(doc.draw_object('g',
        {'style':'stroke-width:0.02'}, group=ball))

def startpath1(t):
    phi = 2. * pi * t
    return s2['c'] + 1.5 * array([cos(phi), sin(phi)])

def startpath2(t):
    phi = 2. * pi * t
    return s1['c'] + s1['r'] * array([cos(phi), -sin(phi)])
    
nlines1 = 16
startpoints = Startpath(field, startpath1).npoints(nlines1)
nlines2 = 14
startpoints += Startpath(field, startpath2, t0=0.195, t1=1-0.195).npoints(nlines2)

for ip, p0 in enumerate(startpoints):
    line = FieldLine(field, p0, directions='both', maxr=7.,
        bounds_func=lambda xy: max([s['r'] - vabs(xy-s['c']) for s in [s1, s2]]))
    
    # draw little charge signs near the surface
    path_minus = 'M {0:.5f},0 h {1:.5f}'.format(-2./u, 4./u)
    path_plus = 'M {0:.5f},0 h {1:.5f} M 0,{0:.5f} v {1:.5f}'.format(-2./u, 4./u)
    for si in range(2):
        sphere = [s1, s2][si]
        
        # check if fieldline ends inside the sphere
        for ci in range(2):
            if (vabs(line.get_position(ci) - sphere['c']) < sphere['r'] and
                vabs(line.get_position(1-ci) - sphere['c']) > sphere['r']):
                # find the point where the field line cuts the surface
                t = optimize.brentq(lambda t: vabs(line.get_position(t)
                    - sphere['c']) - sphere['r'], 0., 1.)
                pr = line.get_position(t) - sphere['c']
                cpos = (-0.06 + 0.96 * sphere['r']) * vnorm(pr)
                doc.draw_object('path', {'stroke':'black', 'd':
                    [path_plus, path_minus][ci],
                    'transform':'translate({:.5f},{:.5f})'.format(
                        round(u*cpos[0])/u, round(u*cpos[1])/u)},
                        group=ball_charges[si])
    
    arrow_d = 2.0
    of = {'start':0.5 + s1['r'] / arrow_d, 'leave_image':0.45,
          'enter_image':0.5, 'end':0.5 + s2['r'] / arrow_d}
    ar_st = {'dist':arrow_d, 'offsets':of}
    if ip >= nlines1:
        ar_st = {'potential':pot, 'at_potentials':[0.55*U0]}
    ar_st['scale'] = 1.2
    doc.draw_line(line, arrows_style=ar_st)
doc.write()

Лиценцирање

Ја, носилац ауторског права над овим делом, објављујем исто под следећом лиценцом:
w:sr:Кријејтив комонс
ауторство делити под истим условима
Дозвољено је:
  • да делите – да умножавате, расподељујете и преносите дело
  • да прерађујете – да прерадите дело
Под следећим условима:
  • ауторство – Морате да дате одговарајуће заслуге, обезбедите везу ка лиценци и назначите да ли су измене направљене. Можете то урадити на било који разуман манир, али не на начин који предлаже да лиценцатор одобрава вас или ваше коришћење.
  • делити под истим условима – Ако измените, преобразите или доградите овај материјал, морате поделити своје доприносе под истом или компатибилном лиценцом као оригинал.

Натписи

Укратко објашњење шта ова датотека представља/приказује
Electric field around a large and a small sphere at opposite potential

Ставке приказане у овој датотеци

приказује

Нека вредност без ставке на Википодаци

30. мај 2020

image/svg+xml

Историја датотеке

Кликните на датум/време да бисте видели тадашњу верзију датотеке.

Датум/времеМинијатураДимензијеКорисникКоментар
тренутна14:37, 30. мај 2020.Минијатура за верзију на дан 14:37, 30. мај 2020.800 × 600 (183 kB)Geek3Uploaded own work with UploadWizard

Следећа страница користи ову датотеку:

Глобална употреба датотеке

Други викији који користе ову датотеку:

Метаподаци