Keramičko inženjerstvo — разлика између измена

Садржај обрисан Садржај додат
.
Ред 96:
 
Takve defektivne polikristalne koloidne strukture su osnovni elementi submikrometarske koloidne [[materials science|nauke o materijalima]], i samim tim, pružaju prvi korak u razvoju rigoroznijeg razumevanja mehanizama koji su uključeni u mikrostrukturnu evoluciju u neorganskim sistemima kao što je polikristalna keramika.
 
=== Samosastavljanje ===
[[File:Host Guest Complex Nanocapsule Science Year2005 Vol309 Page2037.jpg|thumbnail|An example of a supramolecular assembly.<ref>{{cite journal|journal=Science|year=2005|volume=309|doi=10.1126/science.1116579|title=Fluorescent Guest Molecules Report Ordered Inner Phase of Host Capsules in Solution|last1=Dalgarno|first1=S. J.|pmid=16179474|last2=Tucker|first2=SA|last3=Bassil|first3=DB|last4=Atwood|first4=JL|issue=5743|bibcode = 2005Sci...309.2037D|pages=2037–9 |url=https://semanticscholar.org/paper/bce9ae3d2cc7a8ab297d9b7fb73e3faa795e4954}}</ref>]]
{{rut}}
[[Self-assembly|Samosastavljanje]] is the most common term in use in the modern scientific community to describe the spontaneous aggregation of particles (atoms, molecules, colloids, micelles, etc.) without the influence of any external forces. Large groups of such particles are known to assemble themselves into [[thermodynamic]]ally stable, structurally well-defined arrays, quite reminiscent of one of the 7 [[crystal]] systems found in [[metallurgy]] and [[mineralogy]] (e.g. [[face-centred cubic]], [[body-centred cubic]], etc.). The fundamental difference in equilibrium structure is in the spatial scale of the unit cell (or [[lattice parameter]]) in each particular case.
 
Thus, self-assembly is emerging as a new strategy in chemical synthesis and [[nanotechnology]]. [[Molecular]] self-assembly has been observed in various [[biological]] systems and underlies the formation of a wide variety of complex biological structures. Molecular crystals, liquid crystals, colloids, micelles, [[emulsions]], phase-separated polymers, thin films and self-assembled monolayers all represent examples of the types of highly ordered structures which are obtained using these techniques. The distinguishing feature of these methods is self-organization in the absence of any external forces.
 
In addition, the principal mechanical characteristics and structures of biological ceramics, polymer [[Composite material|composites]], [[elastomers]], and [[cell (biology)|cellular]] materials are being re-evaluated, with an emphasis on bioinspired materials and structures. Traditional approaches focus on design methods of biological materials using conventional synthetic materials. This includes an emerging class of [[Mechanics|mechanically]] superior [[biomaterials]] based on microstructural features and designs found in nature. The new horizons have been identified in the synthesis of bioinspired materials through processes that are characteristic of biological systems in nature. This includes the nanoscale self-assembly of the components and the development of [[hierarchical]] structures.<ref name="K"/><ref name="L"/><ref name=ariga>{{Cite journal | doi = 10.1088/1468-6996/9/1/014109| pmid = 27877935| title = Challenges and breakthroughs in recent research on self-assembly| journal = Science and Technology of Advanced Materials| volume = 9| issue = 1| pages = 014109| year = 2008| last1 = Ariga | first1 = K. | last2 = Hill | first2 = J. P. | last3 = Lee | first3 = M. V. | last4 = Vinu | first4 = A. | last5 = Charvet | first5 = R. | last6 = Acharya | first6 = S. | bibcode = 2008STAdM...9a4109A|pmc=5099804}}</ref>
 
== Reference ==
{{Reflist|}}
 
== Literatura ==
{{refbegin|30em}}
* {{cite book|doi=10.1117/12.405270|title=Proceedings of SPIE|chapter=Transparent ceramics for armour and EM window applications|year=2000|last1=Patel|first1=Parimal J.|volume=4102|pages=1–14|series=Inorganic Optical Materials II|chapter-url=https://zenodo.org/record/1235592}}
* Harris, D.C., "Materials for Infrared Windows and Domes: Properties and Performance", SPIE PRESS Monograph, Vol. PM70 (Int. Society of Optical Engineers, Bellingham WA, 2009) {{ISBN|978-0-8194-5978-7}}
* {{cite book |first=C.J. |last=Brinker |author2=Scherer, G.W. |title=Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing |publisher=Academic Press |year=1990 |isbn=978-0-12-134970-7}}
* {{cite journal |first=L.L. |last=Hench |author2=West, J.K. |title=The Sol-Gel Process |journal=Chemical Reviews |volume=90 |page=33 |year=1990 |doi=10.1021/cr00099a003}}
* {{cite book |first=L. |last=Klein |title=Sol-Gel Optics: Processing and Applications |publisher=Springer Verlag |year=1994|url=https://books.google.com/?id=wH11Y4UuJNQC&printsec=frontcover|isbn=978-0-7923-9424-2}}
* {{cite journal |last= Schuh|first=Christopher |author2=Nieh, T.G. |year=2002|doi=10.1557/PROC-740-I1.8|title=Hardness and Abrasion Resistance of Nanocrystalline Nickel Alloys Near the Hall-Petch Breakdown Regime|url=http://www.dtic.mil/dtic/tr/fulltext/u2/p014240.pdf |journal=Mater. Res. Soc. Symp. Proc. |volume=740}}
* {{Cite book |last1 = Chiang|first1 = Yet-Ming |last2 = Birnie|first2 = Dunbar P. |last3 = Kingery|first3 = W. David |title = Physical Ceramics: Principles for Ceramic Science and Engineering |publisher = John Wiley & Sons |date = May 1996 |location = |url = |doi = |id = |isbn = 0-471-59873-9}}
*{{cite book |last = Green |first = D.J. |author2=Hannink, R. |author3=Swain, M.V. |year = 1989 |title = Transformation Toughening of Ceramics |location = Boca Raton |publisher = CRC Press |isbn = 0-8493-6594-5 }}
* {{cite book |last = German |first = R.M. |year = 1996 |title = Sintering Theory and Practice |publisher = John Wiley & Sons, Inc |isbn = 0-471-05786-X }}
* {{Cite book |last1 = Kang|first1 = Suk-Joong L. |title = Sintering |publisher = [[Elsevier]], Butterworth Heinemann |year = 2005 |edition = 1st |location = Oxford |url = |doi = |id = |isbn = 0-7506-6385-5}}
{{refend}}
 
== Spoljašnje veze ==