Keramičko inženjerstvo — разлика између измена

Садржај обрисан Садржај додат
.
Ред 98:
 
=== Samosastavljanje ===
[[File:Host Guest Complex Nanocapsule Science Year2005 Vol309 Page2037.jpg|thumbnail|AnPrimer examplesupramolekularnog of a supramolecular assemblysklopa.<ref>{{cite journal|journal=Science|year=2005|volume=309|doi=10.1126/science.1116579|title=Fluorescent Guest Molecules Report Ordered Inner Phase of Host Capsules in Solution|last1=Dalgarno|first1=S. J.|pmid=16179474|last2=Tucker|first2=SA|last3=Bassil|first3=DB|last4=Atwood|first4=JL|issue=5743|bibcode = 2005Sci...309.2037D|pages=2037–9 |url=https://semanticscholar.org/paper/bce9ae3d2cc7a8ab297d9b7fb73e3faa795e4954}}</ref>]]
{{rut}}
[[Self-assembly|Samosastavljanje]] is the most common term in use in the modern scientific community to describe the spontaneous aggregation of particles (atoms, molecules, colloids, micelles, etc.) without the influence of any external forces. Large groups of such particles are known to assemble themselves into [[thermodynamic]]ally stable, structurally well-defined arrays, quite reminiscent of one of the 7 [[crystal]] systems found in [[metallurgy]] and [[mineralogy]] (e.g. [[face-centred cubic]], [[body-centred cubic]], etc.). The fundamental difference in equilibrium structure is in the spatial scale of the unit cell (or [[lattice parameter]]) in each particular case.
 
[[Self-assembly|Samosastavljanje]] je najčešći termin koji se u modernoj naučnoj zajednici koristi za opisivanje spontane agregacije čestica (atoma, molekula, koloida, micela itd), bez uticaja bilo kakvih spoljnih sila. Poznato je da se velike grupe takvih čestica sastavljaju u [[thermodynamic|termodinamički]] stabilne, strukturno dobro definisane nizove, koji u znatnoj meri podsećaju na jedan od 7 [[kristal]]nih sistema koji se javljaju u [[metallurgy|metalurgiji]] i mineralogiji (npr. [[Тесерална кристална система|teseralno-kubni]], kubno-centrirani, itd.). Temeljna razlika u ravnotežnoj strukturi je u prostornoj skali jedinične ćelije (ili [[Lattice constant|parametra rešetke]]) u svakom konkretnom slučaju.
Thus, self-assembly is emerging as a new strategy in chemical synthesis and [[nanotechnology]]. [[Molecular]] self-assembly has been observed in various [[biological]] systems and underlies the formation of a wide variety of complex biological structures. Molecular crystals, liquid crystals, colloids, micelles, [[emulsions]], phase-separated polymers, thin films and self-assembled monolayers all represent examples of the types of highly ordered structures which are obtained using these techniques. The distinguishing feature of these methods is self-organization in the absence of any external forces.
 
Tako se samosastavljanje pojavljuje kao nova strategija u hemijskoj sintezi i [[nanotechnology|nanotehnologiji]]. [[Molekul]]arno samosklapanje je primećeno u različitim [[Биологија|biološkim]] sistemima i u osnovi je formiranja širokog spektra složenih bioloških struktura. Molekularni kristali, tečni kristali, koloidi, micele, [[Емулзија|emulzije]], fazno razdvojeni polimeri, tanki filmovi i samostalno sastavljeni monoslojevi predstavljaju primere vrsta visoko uređenih struktura koje se dobijaju pomoću ovih tehnika. Prepoznatljiva karakteristika ovih metoda je samoorganizovanje u odsustvu bilo kakvih spoljnih sila.
In addition, the principal mechanical characteristics and structures of biological ceramics, polymer [[Composite material|composites]], [[elastomers]], and [[cell (biology)|cellular]] materials are being re-evaluated, with an emphasis on bioinspired materials and structures. Traditional approaches focus on design methods of biological materials using conventional synthetic materials. This includes an emerging class of [[Mechanics|mechanically]] superior [[biomaterials]] based on microstructural features and designs found in nature. The new horizons have been identified in the synthesis of bioinspired materials through processes that are characteristic of biological systems in nature. This includes the nanoscale self-assembly of the components and the development of [[hierarchical]] structures.<ref name="K"/><ref name="L"/><ref name=ariga>{{Cite journal | doi = 10.1088/1468-6996/9/1/014109| pmid = 27877935| title = Challenges and breakthroughs in recent research on self-assembly| journal = Science and Technology of Advanced Materials| volume = 9| issue = 1| pages = 014109| year = 2008| last1 = Ariga | first1 = K. | last2 = Hill | first2 = J. P. | last3 = Lee | first3 = M. V. | last4 = Vinu | first4 = A. | last5 = Charvet | first5 = R. | last6 = Acharya | first6 = S. | bibcode = 2008STAdM...9a4109A|pmc=5099804}}</ref>
 
InPored additiontoga, theosnovne principalmehaničke mechanicalkarakteristike characteristicsi andstrukture structuresbiološke of biological ceramicskeramike, polymerpolimernih [[Composite material|compositeskompozita]], [[elastomerselastomer]],a andi [[cell (biology)|cellularćelijskih]] materialsmaterijala arese being re-evaluatedpreispituju, with ansa emphasisnaglaskom onna bioinspiredbioinspirirane materialsmaterijale andi structuresstrukture. TraditionalTradicionalni approachespristupi focususredotočeni onsu designna methodsmetode ofdizajna biologicalbioloških materialsmaterijala usingkoji conventionalkoriste synthetickonvencionalne materialssintetičke materijale. ThisOvo includesuključuje annovu emerging class ofklasu [[Mechanics|mechanicallymehanički]] superiorsuperiornih [[biomaterialsMaterijal#Biomaterijali|biomaterijala]] basedzasnovanih onna microstructuralmikrostrukturnim featureskarakteristikama andi designsdizajnu foundkoji inse nature.nalaze Theu newprirodi. horizonsNovi havehorizonti beensu identifiedidentifikovani inu thesintezi synthesisbioinspirisanih ofmaterijala bioinspiredkroz materialsprocese throughkoji processessu thatkarakteristični areza characteristicbiološke ofsisteme biologicalu systems in natureprirodi. ThisOvo includesuključuje thesamostalno nanoscalesklapanje self-assemblykomponenata ofna thenano componentsrazmerama andi the development ofrazvoj [[hierarchicalХијерархија|hijerarhijskih]] structuresstruktura.<ref name="K"/><ref name="L"/><ref name=ariga>{{Cite journal | doi = 10.1088/1468-6996/9/1/014109| pmid = 27877935| title = Challenges and breakthroughs in recent research on self-assembly| journal = Science and Technology of Advanced Materials| volume = 9| issue = 1| pages = 014109| year = 2008| last1 = Ariga | first1 = K. | last2 = Hill | first2 = J. P. | last3 = Lee | first3 = M. V. | last4 = Vinu | first4 = A. | last5 = Charvet | first5 = R. | last6 = Acharya | first6 = S. | bibcode = 2008STAdM...9a4109A|pmc=5099804}}</ref>
 
== Reference ==