Orbitalna mehanika — разлика између измена

Садржај обрисан Садржај додат
.
 
Ред 8:
== Istorija ==
 
UntilSve thedo riseuspona ofsvemirskih [[spaceflight|space travel]] inputovanja theu twentiethdvadesetom centuryveku, therepostojala wasje littlemala distinctionrazlika betweenizmeđu orbitalorbitalne andi celestialnebeske mechanicsmehanike. AtU the time ofvreme [[Sputnik]], thea fieldpolje wasse termednazivalo 'space„svemirskom dynamics'dinamikom”.<ref>{{cite book|last1=Thomson|first1=William T.|title=Introduction to Space Dynamics|date=1961|publisher=Wiley|location=New York}}</ref> TheFundamentalne fundamental techniquestehnike, suchpoput asonih thosekoje usedse tokoriste solveza therešavanje [[KeplerianKepler problem|Keplerovog problema]] (determiningodređivanja positionpoložaja askao a function offunkcije timevremena), arestoga thereforesu theiste sameu inobe both fieldsoblasti. FurthermorePored toga, the history ofistorija thepolja fieldsje aregotovo almostu entirelypotpunosti sharedzajednička.
 
[[JohannesJohan Kepler]] wasje thebio firstprvi tokoji successfullyje modeluspešno planetarymodelovao orbitsplanetarne toorbite asa highvisokim degreestepenom of accuracytačnosti, publishingobjavivši [[Kepler's laws of planetary motion|hissvoje lawszakone]] in 1605. [[IsaacIsak NewtonNjutn]] publishedobjavio moreje generalviše lawsopštih ofzakona celestialnebeskog motionkretanja inu theprvom firstizdanju editionsvog ofdela -{''[[Philosophiæ Naturalis Principia Mathematica]]''}- (1687), whichkoji gavesu adali methodmetodu forza findingpronalaženje theorbite orbittela of a body following asledeći [[parabola|parabolicparabolični]] pathput fromiz threetri observationsopservacije.<ref>{{cite book|last1=Bate|first1=R. R.|last2=Mueller|first2=D. D.|last3=White|first3=J. E.|title=Fundamentals of Astrodynamics|url=https://books.google.com/books?id=UtJK8cetqGkC&pg=PR5|year=1971|publisher=Courier Corporation|isbn=978-0-486-60061-1|page=5}}</ref> ThisOvo wasje used byiskoristio [[Edmund HalleyHalej]] toza establishuspostavljanje theorbita orbits of variousraznih [[cometskometa]], includinguključujući thati whichonu bearskoja hisnosi namenjegovo ime. Newton's method of successiveNjutonova approximationmetoda wassukcesivne formalisedaproksimacije intoformalizovana anje analyticu methodanalitičku bymetodu [[EulerЛеонард Ојлер|Ojlerovim]] indoprinosom iz 1744. godine, whosečiji workje wasrad inzadim turnbio generalisedgeneralizovan tona ellipticaleliptične andi hyperbolichiperboličke orbits byorbite [[JohannЈохан HeinrichХајнрих LambertЛамберт|LambertLambertovim]] indoprinosom 1761–1777tokom 1761-1777.
 
Druga prekretnica u određivanju orbite bila je pomoć [[Carl Friedrich Gauss|Karla Fridriha Gausa]] u otrkiću [[dwarf planet|patuljaste planete]] [[Ceres (dwarf planet)|Ceres]] 1801. godine. [[Gausova metoda]] je mogla da koristi samo tri opažanja (u obliku parova [[Rektascenzija|rektascenzije]] i [[Deklinacija (astronomija)|deklinacije]]) da pronađe šest [[Орбитални елементи|orbitalnih elemenata]] koji u potpunosti opisuju orbitu. Teorija određivanja orbite je kasnije razvijena do tačke u kojoj se danas primenjuje u GPS prijemnicima, kao i u praćenju i katalogizaciji tek promatranih [[Minor planet|malih planeta]]. Moderno određivanje i predviđanje orbite koriste se za rad svih tipova satelita i svemirskih sondi, jer je potrebno znati njihove buduće položaje sa visokom tačnošću.
Another milestone in orbit determination was [[Carl Friedrich Gauss]]'s assistance in the "recovery" of the [[dwarf planet]] [[Ceres (dwarf planet)|Ceres]] in 1801. [[Gauss's method]] was able to use just three observations (in the form of pairs of [[right ascension]] and [[declination]]), to find the six [[orbital elements]] that completely describe an orbit. The theory of orbit determination has subsequently been developed to the point where today it is applied in GPS receivers as well as the tracking and cataloguing of newly observed [[minor planet]]s. Modern orbit determination and prediction are used for operating all types of satellites and space probes, as it is necessary to know their future positions to a high degree of accuracy.
 
Astrodinamiku je razvio astronom [[Samuel Herrick (astronomer)|Samjuel Herik]] početkom 1930-ih. On se konsultovao sa raketnim naučnika [[Роберт Хачинс Годард|Robertom Godardom]] i bio je ohrabren je da nastavi svoj rad na svemirskim navigacionim tehnikama, jer je Godard verovao da će one biti potrebne u budućnosti. Numeričke tehnike astrodinamike bile su povezane sa novim moćnim računarima 1960-ih godina i čovek je bio spreman da putuje na [[Mesec]] i da se vrati.
Astrodynamics was developed by astronomer [[Samuel Herrick (astronomer)|Samuel Herrick]] beginning in the 1930s. He consulted the rocket scientist [[Robert Goddard]] and was encouraged to continue his work on space navigation techniques as Goddard believed they would be needed in the future. Astrodynamics numerical techniques were coupled with new powerful computers in the 1960s, and man was ready to travel to the moon and return.
 
==Reference==