Фибоначијеви полиноми

Фибоначијеви полиноми дефинишу се следећом рекурзијом:

Сматрају се генерализацијом Фибоначијевога низа.

Својства и Лукасови полиномиУреди

Генерирајућа функција Фибоначијевих полинома је:

 

Првих неколико Фибоначијевих полинома:

 
 
 
 
 
 
 

Лукасови полиноми користе исту рекурзију, али са нешто другачијим почетним вредностима:  

Генерирајућа функција Лукасових полинома је:

 

Првих неколико Лукасових полинома је:

 
 
 
 
 
 
 

Постоје и друга својства тих полинома:

 
 
 
 

Комбинаторна интерпретацијаУреди

 
Уз помоћ полудијагонала Паскаловога троугла могу да се ичитају Фибоначијеви бројеви (црвено означени). Они представљају суму бројева на полудијагонали.

Ако је F(n,k) коефицијент од xk у Fn(x), тако да је:

 

онда F(n,k) представља број начина на који се може добити n−1 сумом само помоћу 1 и 2, а при томе се 1 користи к пута. Тако је нпр. F(6,3)=4, јер се 5 може добити на 4 начина:1+1+1+2, 1+1+2+1, 1+2+1+1 и 2+1+1+1.

На основу тога следи да је F(n,k) једнак биномном коефицијенту:

 

Уз помоћ те релације Фибоначијеви бројеви могу да се очитаваку из Паскаловога троугла.

ЛитератураУреди