U hemiji, Zintlova faze je product of a reaction between a group 1 (alkali metal) or group 2 (alkaline earth metal) and main group metal or metalloid (from groups 13, 14, 15, or 16). It is characterized by intermediate metallic/ionic bonding. Zintl phases are a subgroup of brittle, high-melting intermetallic compounds that are diamagnetic or exhibit temperature-independent paramagnetism and are poor conductors or semiconductors.[1]

This type of solid is named after German chemist Eduard Zintl who investigated them in the 1930s. The term "Zintl Phases" was first used by Laves in 1941.[2] In his early studies, Zintl noted that there was an atomic volume contraction upon the formation of these products and realized that this could indicate cation formation. He suggested that the structures of these phases were ionic, with complete electron transfer from the more electropositive metal to the more electronegative main group element.[1] The structure of the anion within the phase is then considered on the basis of the resulting electronic state. These ideas are further developed in the Zintl-Klemm-Busmann concept, where the polyanion structure should be similar to that of the isovalent element. Further, the anionic sublattice can be isolated as polyanions (Zintl ions) in solution and are the basis of a rich subfield of main group inorganic chemistry.

A "Zintl Phase" was first observed in 1891 by M. Joannis, who noted an unexpected green colored solution after dissolving lead and sodium in liquid ammonia, indicating the formation of a new product.[3] It was not until many years later, in 1930, that the stoichiometry of the new product was identified as Na4Pb94− by titrations performed by Zintl et al.;[4] and it was not until 1970 that the structure was confirmed by crystallization with ethylenediamine (en) by Kummer.[5]

In the intervening years and in the years since, many other reaction mixtures of metals were explored to provide a great number of examples of this type of system. There are hundreds of both compounds composed of group 14 elements and group 15 elements, plus dozens of others beyond those groups, all spanning a variety of different geometries.[6] Corbett has contributed improvements to the crystallization of Zintl ions by demonstrating the use of chelating ligands, such as cryptands, as cation sequestering agents.[7]

More recently, Zintl phase and ion reactivity in more complex systems, with organic ligands or transition metals, have been investigated, as well as their use in practical applications, such as for catalytic purposes or in materials science.

Zintl phases

уреди
 
A periodic table illustrating the location of the Zintl line.

Zintl phases are intermetallic compounds that have a pronounced ionic bonding character. They are made up of a polyanionic substructure and group 1 or 2 counter ions, and their structure can be understood by a formal electron transfer from the electropositive element to the more electronegative element in their composition. Thus, the valence electron concentration (VEC) of the anionic element is increased, and it formally moves to the right in its row of the periodic table. Generally the anion does not reach an octet, so to reach that closed shell configuration, bonds are formed. The structure can be explained by the 8-N rule (replacing the number of valence electrons, N, by VEC), making it comparable to an isovalent element.[8] The formed polyanionic substructures can be chains (two-dimensional), rings, and other two-or three-dimensional networks or molecule-like entities.

The Zintl line is a hypothetical boundary drawn between groups 13 and 14. It separates the columns based on the tendency for group 13 elements to form metals when reacted with electropositive group 1 or 2 elements and for group 14 and above to form ionic solids.[9] The 'typical salts' formed in these reactions become more metallic as the main group element becomes heavier.[8]

Reference

уреди
  1. ^ а б Sevov, S.C., Zintl Phases in Intermetallic Compounds, Principles and Practice: Progress, Westbrook, J.H.; *Freisher, R.L.: Eds.; John Wiley & Sons. Ltd., Chichester, England, 2002, pp. 113-132 Slavi Chapter
  2. ^ Laves F (1941) Naturwissenschaften 29:244 (Eduard Zintls Arbeiten über die Chemie und Struktur von Legierungen)
  3. ^ M. Joannis, Hebd. Seances Acad. Sci. 1891, 113, 795.
  4. ^ Zintl, E; Goubeau, J; Dullenkopf, W (1931). „Metals and alloys. I. Salt-like compounds and intermetallic phases of sodium in liquid ammonia.”. Z. Phys. Chem. A (154): 1—46. 
  5. ^ Diehl, Lothar; Khodadadeh, Keyumarss; Kummer, Dieter; Strähle, Joachim (октобар 1976). „Anorganische Polyederverbindungen, III. Zintl's "Polyanionige Salze"︁: Darstellung und Eigenschaften der kristallinen Verbindungen [Na4·7 en]Sn9, [Na4·5 en]Ge9 und [Na3·4 en]Sb7 und ihrer Lösungen Die Kristallstruktur von [Na4·7 en]Sn9”. Anorganische Chemie. 109 (10): 3404—3418. doi:10.1002/cber.19761091018 — преко Chemistry Europe. 
  6. ^ zintl ions 14 15 review
  7. ^ Corbett, John D.; Adolphson, Douglas G.; Merryman, Don J.; Edwards, Paul A.; Armatis, Frank J. (1. 10. 1975). „Synthesis of stable homopolyatomic anions of antimony, bismuth, tin, and lead. Crystal structure of a salt containing the heptaantimonide(3-) anion”. Journal of the American Chemical Society (на језику: енглески). 97 (21): 6267—6268. ISSN 0002-7863. doi:10.1021/ja00854a066. 
  8. ^ а б Schäfer, Herbert; Eisenmann, Brigitte; Müller, Wiking (септембар 1973). „Zintl Phases: Transitions between Metallic and Ionic Bonding”. Angewandte Chemie International Edition in English (на језику: енглески). 12 (9): 694—712. doi:10.1002/anie.197306941. 
  9. ^ Gärtner, S.; Korber, N. (2013-01-01), Reedijk, Jan; Poeppelmeier, Kenneth, ур., „1.09 - Zintl Anions”, Comprehensive Inorganic Chemistry II (Second Edition) (на језику: енглески), Amsterdam: Elsevier, стр. 251—267, ISBN 978-0-08-096529-1, doi:10.1016/b978-0-08-097774-4.00110-8, Приступљено 2022-12-13 

Spoljašnje veze

уреди