Отворите главни мени

U kvantnoj mehanici, glavni kvantni broj (simbol n) je jedan od četiri kvantna broja koji su dodeljeni svim elektronima u atomu da bi se opisalo stanje elektrona. Kao diskretna promenljiva, glavni kvantni broj je uvek ceo broj. Kako se n povećava, broj elektronskih ljuski se povećava i elektron provodi više vremena dalje od jezgra. Kako se n povećava, elektron je takođe pri višoj energiji i, zbog toga, manje čvrsto je vezan za jezgro. Ukupna energija elektrona, kao što je opisano u daljem tekstu, je negativna inverzna kvadratna funkcija glavnog kvantnog broja n.

Glavni kvantni broj je orginalno stvoren za upotrebu u poluklasičnom Borovom modelu atoma. Ovim brojem se označavaju različiti energetski nivoi. Razvojem savremene kvantne mehanike, jednostavni Borov model zamenjen je složenijom teorijom atomskih orbitala. Međutim, savremena teorija i dalje zahteva postojanje glavnog kvantnog broja.

Pored glavnog kvantnog broja, ostali kvantni brojevi za vezane elektrone su azimutalni kvantni broj , magnetni kvantni broj ml i spinski kvantni broj s.

DerivacijaУреди

Postoji skup kvantnih brojeva povezanih sa energetskim stanjima atoma. Četiri kvantna broja n, , m, i s određuju kompletno i jedinstveno kvantno stanje jednog elektrona u atomu, koje se naziva njegovom talasnom funkcijom ili orbitalom. Dva elektrona koji pripadaju istom atomu ne mogu imati iste vrednosti za sva četiri kvantna broja, prema Paulijevom principu isključenja.[1][2] Talasna funkcija Šredingerove talasne jednačine svodi se na tri jednačine koje kad se reše dovode do prva tri kvantna broja.[3] Stoga su jednačine za prva tri kvantna broja međusobno povezane. Glavni kvantni broj nastao je kao rešenje radijalnog dela talasne jednačine kao što je prikazano u nastavku.

Šredingerova talasna jednačina opisuje energiju sopstvenih stanja sa odgovarajućim realnim brojevima En i konačnom ukupnom energijom, vrednost En.[4][5][6][7][8] Energije vezanog stanja elektrona u atomu vodonika date su sa:

 

Parametar n može da poprimi samo pozitivne celobrojne vrednosti. Koncept nivoa energije i notacija preuzeti su iz ranijeg Borovog modela atoma.[9][10] Šredingerova jednačina je razvila ideju od ravanskog dvodimenzionalnog Borovog atoma do modela trodimenzionalne talasne funkcije.

U Borovom modelu, dozvoljene orbite su izvedene iz kvantizovanih (diskretnih) vrednosti orbitalnog momenta impulsa,[11] L prema jednačini

 

gde je n = 1, 2, 3, … i naziva se glavni kvantni broj, a h je Plankova konstanta. Ova formula nije tačna u kvantnoj mehanici, jer je magnituda momenta impulsa opisana azimutnim kvantnim brojem, ali nivoi energije su tačni i klasično odgovaraju zbiru potencijalne i kinetičke energije elektrona.

Glavni kvantni broj n predstavlja relativnu ukupnu energiju svake orbitale. Nivo energije svake orbitale povećava se kako se povećava njena udaljenost od jezgra. Skupovi orbitala iste n vrednosti često se nazivaju elektronskim ljuskama ili nivoima energije.

Minimalna energija izmenjena tokom bilo koje interakcije talas-materija je produkt talasne frekvencije pomnožene sa Plankovom konstantom.[12][13][14] Zbog toga talas prikazuje pakete energije slične česticama koji se nazivaju kvantovi.[15] Razlika između nivoa energije koji imaju različit n određuje emisioni spektar elementa.

U notaciji periodnog sistema, označene su glavne ljuske elektrona:

K (n = 1), L (n = 2), M (n = 3), etc.

na bazi glavnog kvantnog broja.

Glavni kvantni broj je povezan sa radijalnim kvantnim brojem, nr, jednačinom:

 

gde je azimutalni kvantni broj, i nr je jednako broju čvorova u radijalnoj talasnoj funkciji.

Definitivna ukupna energija za kretanje čestica u običnom Kulonovom polju[16][17][18] i sa diskretnim spektrom, data je jednačinom:

 ,

gde je:

  •   - Borov radijus,
  •   - glavni kvantni broj.

Ovaj diskretni energetski spektar nastao je rešenjem kvantno-mehaničkog problema kretanja elektrona u Kulonovom polju. On se podudara sa spektrom koji je dobijen uz pomoć primene Bor-Somerfeldovih pravila kvantizacije do klasične jednačine. Radijalni kvantni broj određuje broj čvorova radijalne talasne funkcije  .[19].

Vidi jošУреди

ReferenceУреди

  1. ^ Kenneth S. Krane (5. 11. 1987). Introductory Nuclear Physics. Wiley. ISBN 978-0-471-80553-3. 
  2. ^ Langmuir, Irving (1919). „The Arrangement of Electrons in Atoms and Molecules” (PDF). Journal of the American Chemical Society. 41 (6): 868—934. doi:10.1021/ja02227a002. Архивирано из оригинала (PDF) на датум 2012-03-30. Приступљено 2008-09-01. 
  3. ^ Griffiths, David J. (2004), Introduction to Quantum Mechanics (2nd ed.), Prentice Hall, ISBN 978-0-13-111892-8 
  4. ^ Sakurai, Jun (1995). „7.8”. Ур.: Tuan, San. Modern Quantum Mechanics (Revised изд.). Reading, Mass: Addison-Wesley. стр. 418—9. ISBN 0-201-53929-2. »Suppose the barrier were infinitely high ... we expect bound states, with energy E > 0. ... They are stationary states with infinite lifetime. In the more realistic case of a finite barrier, the particle can be trapped inside, but it cannot be trapped forever. Such a trapped state has a finite lifetime due to quantum-mechanical tunneling. ... Let us call such a state quasi-bound state because it would be an honest bound state if the barrier were infinitely high.« 
  5. ^ K. Winkler; G. Thalhammer; F. Lang; R. Grimm; J. H. Denschlag; A. J. Daley; A. Kantian; H. P. Buchler; P. Zoller (2006). „Repulsively bound atom pairs in an optical lattice”. Nature. 441 (7095): 853—856. Bibcode:2006Natur.441..853W. PMID 16778884. arXiv:cond-mat/0605196 . doi:10.1038/nature04918. 
  6. ^ Javanainen, Juha; Odong Otim; Sanders, Jerome C. (април 2010). „Dimer of two bosons in a one-dimensional optical lattice”. Phys. Rev. A. 81 (4): 043609. Bibcode:2010PhRvA..81d3609J. arXiv:1004.5118 . doi:10.1103/PhysRevA.81.043609. 
  7. ^ M. Valiente & D. Petrosyan (2008). „Two-particle states in the Hubbard model”. J. Phys. B: At. Mol. Opt. Phys. 41 (16): 161002. Bibcode:2008JPhB...41p1002V. arXiv:0805.1812 . doi:10.1088/0953-4075/41/16/161002. 
  8. ^ Max T. C. Wong & C. K. Law (мај 2011). „Two-polariton bound states in the Jaynes-Cummings-Hubbard model”. Phys. Rev. A. American Physical Society. 83 (5): 055802. Bibcode:2011PhRvA..83e5802W. arXiv:1101.1366 . doi:10.1103/PhysRevA.83.055802. 
  9. ^ Niels Bohr (1913). „On the Constitution of Atoms and Molecules, Part I” (PDF). Philosophical Magazine. 26 (151): 1—24. doi:10.1080/14786441308634955. 
  10. ^ „CK12 – Chemistry Flexbook Second Edition – The Bohr Model of the Atom”. Приступљено 30. 9. 2014. 
  11. ^ Wilson, E. B. (1915). Linear Momentum, Kinetic Energy and Angular Momentum. The American Mathematical Monthly. XXII. Ginn and Co., Boston, in cooperation with University of Chicago, et al. стр. 190 — преко Google books. 
  12. ^ Planck, M. (1901). „Ueber die Elementarquanta der Materie und der Elektricität”. Annalen der Physik (на језику: немачки). 309 (3): 564—566. Bibcode:1901AnP...309..564P. doi:10.1002/andp.19013090311. 
  13. ^ Planck, Max (1883). „Ueber das thermodynamische Gleichgewicht von Gasgemengen”. Annalen der Physik (на језику: немачки). 255 (6): 358—378. Bibcode:1883AnP...255..358P. doi:10.1002/andp.18832550612. 
  14. ^ Einstein, A. (1905). „Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt” (PDF). Annalen der Physik (на језику: немачки). 17 (6): 132—148. Bibcode:1905AnP...322..132E. doi:10.1002/andp.19053220607. 
  15. ^ Wiener, N. (1966). Differential Space, Quantum Systems, and Prediction. Cambridge: The Massachusetts Institute of Technology Press
  16. ^ Hill, Robert N. (2006), Drake, Gordon, ур., Handbook of atomic, molecular and optical physics, Springer New York, стр. 153—155, ISBN 978-0-387-20802-2, doi:10.1007/978-0-387-26308-3 
  17. ^ Landau, L. D.; Lifshitz, E. M. (1977), Course of theoretical physics III: Quantum mechanics, Non-relativistic theory (3rd изд.), Pergamon Press, стр. 569 
  18. ^ Messiah, Albert (1961), Quantum mechanics, North Holland Publ. Co., стр. 485 
  19. ^ Andrew, A. V. (2006). „2. Schrödinger equation”. Atomic spectroscopy. Introduction of theory to Hyperfine Structure (на језику: енглески). стр. 274. ISBN 978-0-387-25573-6. 

LiteraturaУреди

Spoljašnje vezeУреди