Diskretna matematika
Diskretna matematika je oblast matematike koja proučava strukture koje su u svojoj osnovi diskretne u smislu da ne podržavaju ili ne zahtevaju pojam kontinualnosti.[1][2] Većina ako ne svi objekti koji se proučavaju u diskretnoj matematici su prebrojivi skupovi, poput celih brojeva, konačnih grafova, i formalnih jezika.[3][4] Diskretna matematika je dobila na značaju u proteklih nekoliko decenija usled svojih primena u računarstvu. Koncepti i notacije iz diskretne matematike su korisni za izučavanje i opisivanje objekata ili problema u oblasti računarskih algoritama i programskih jezika. Neke od oblasti čijim izučavanjem se bavi diskretna matematika su: relacije, funkcije, Bulova algebra, grupe i grupoidi, prsteni i polja, polinomi, kompleksni brojevi, konstrukcija polja, sistemi linearnih jednačina, matrice i determinante.[5][6]
U univerzitetskim nastavnim planovima i programima, „Diskretna matematika“ se pojavila tokom 1980-ih, u početku kao kurs za podršku računarstvu; njen sadržaj je u to vreme bio donekle nasumičan. Nastavni plan i program se nakon toga razvio u saradnji sa naporima ACM i MAA u kurs koji je u osnovi namenjen razvoju matematičke zrelosti kod studenata prve godine; stoga je to danas preduslov za matematičke smerove i na nekim univerzitetima.[7][8] Pojavili su se i neki udžbenici diskretne matematike za srednjoškolski uzrast.[9] Na ovom nivou, diskretna matematika se ponekad posmatra kao pripremni kurs, slično predkalkulusu u ovom pogledu.[10]
Veliki izazovi, prošli i sadašnji
urediIstorija diskretne matematike uključivala je niz izazovnih problema koji su usmerili pažnju u oblasti ovog polja. U teoriji grafova, mnoga istraživanja bila su motivisana pokušajima da se dokaže teorema o četiri boje, koja je prvi put izrečena 1852. godine, ali nije bila dokazana sve do 1976. (od strane Keneta Apela i Volfganga Hakena, uz značajnu pomoć računara).[11]
U logici, drugi problem na listi otvorenih problema Dejvida Hilberta predstavljenoj 1900. godine bio je da se dokaže da su aksiomi aritmetike konzistentni. Druga Gedelova teorema o nepotpunosti, dokazana 1931. godine, pokazala je da to nije moguće – barem ne unutar same aritmetike. Hilbertov deseti problem je bio da utvrdi da li data polinomska Diofantova jednačina sa celobrojnim koeficijentima ima celobrojno rešenje. Jurij Matijasevič je 1970. godine dokazao da se to ne može učiniti.
Potreba za razotkrivanjem nemačkih kodova u Drugom svetskom ratu dovela je do napretka u kriptografiji i teorijskoj kompjuterskoj nauci, sa prvim programabilnim digitalnim elektronskim računarom koji je razvijen u engleskom Blečli parku pod vođstvom Alana Tjuringa i njegovog seminalnog dela, O izračunljivim brojevima.[12] Istovremeno, vojni zahtevi su motivisali napredak u istraživanju operacija. Hladni rat je značio da je kriptografija ostala važna, sa fundamentalnim napretkom kao što je kriptografija sa javnim ključem koji se razvijao u narednim decenijama. Operaciona istraživanja su ostala važna kao alat u poslovanju i upravljanju projektima, a metod kritičnog puta razvijen je 1950-ih. Telekomunikaciona industrija je takođe motivisala napredak u diskretnoj matematici, posebno u teoriji grafova i teoriji informacija. Formalna verifikacija iskaza u logici bila je neophodna za razvoj softvera sistema kritičnih za bezbednost, i napredak u automatizovanom dokazivanju teorema je bio vođen ovom potrebom.
Nekoliko oblasti diskretne matematike, posebno teorijske računarske nauke, teorija grafova i kombinatorika, su važne u rešavanju izazovnih problema bioinformatike povezanih sa razumevanjem stabla života.[13]
Trenutno, jedan od najpoznatijih otvorenih problema u teorijskoj informatici je problem P = NP, koji uključuje odnos između klasa složenosti P i NP. Klejov matematički institut ponudio je nagradu od milion dolara za prvi tačan dokaz, zajedno sa nagradama za šest drugih matematičkih problema.[14]
Vidi još
urediReference
uredi- ^ Richard Johnsonbaugh, Discrete Mathematics, Prentice Hall, 2008.
- ^ Franklin, James (2017). „Discrete and continuous: a fundamental dichotomy in mathematics”. Journal of Humanistic Mathematics. 7 (2): 355—378. doi:10.5642/jhummath.201702.18. Pristupljeno 30. 6. 2021.
- ^ Weisstein, Eric W. „Discrete mathematics”. MathWorld.
- ^ https://cse.buffalo.edu/~rapaport/191/S09/whatisdiscmath.html accessed 16 Nov 18
- ^ Biggs, Norman L. (2002), Discrete mathematics, Oxford Science Publications (2nd изд.), New York: The Clarendon Press Oxford University Press, стр. 89, ISBN 9780198507178, MR 1078626, „Discrete Mathematics is the branch of Mathematics in which we deal with questions involving finite or countably infinite sets.”
- ^ Brian Hopkins, Resources for Teaching Discrete Mathematics, Mathematical Association of America, 2008.
- ^ Levasseur, Ken; Al Doerr. Applied Discrete Structures. стр. 8.
- ^ Albert Geoffrey Howson, ур. (1988). Mathematics as a Service Subject. Cambridge University Press. стр. 77—78. ISBN 978-0-521-35395-3.
- ^ Rosenstein, Joseph G. Discrete Mathematics in the Schools. American Mathematical Soc. стр. 323. ISBN 978-0-8218-8578-9.
- ^ „UCSMP”. uchicago.edu.
- ^ а б Wilson, Robin (2002). Four Colors Suffice . London: Penguin Books. ISBN 978-0-691-11533-7.
- ^ Hodges, Andrew (1992). Alan Turing: The Enigma. Random House.
- ^ Hodkinson, Trevor R.; John A. N. Parnell (2007). Reconstruction the Tree of Life: Taxonomy And Systematics of Large And Species Rich Taxa. CRC PressINC. стр. 97. ISBN 978-0-8493-9579-6.
- ^ „Millennium Prize Problems”. 2000-05-24. Архивирано из оригинала 08. 01. 2008. г. Приступљено 2008-01-12.
Литература
uredi- Norman L. Biggs (2002-12-19). Discrete Mathematics. Oxford University Press. ISBN 978-0-19-850717-8.
- Dwyer, John (2010). An Introduction to Discrete Mathematics for Business & Computing. ISBN 978-1-907934-00-1.
- Susanna S. Epp (2010-08-04). Discrete Mathematics With Applications. Thomson Brooks/Cole. ISBN 978-0-495-39132-6.
- Ronald Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics.
- Grimaldi, Ralph P. (2004). Discrete and Combinatorial Mathematics: An Applied Introduction. Addison Wesley. ISBN 978-0-201-72634-3.
- Donald E. Knuth (2011-03-03). The Art of Computer Programming, Volumes 1-4a Boxed Set. Addison-Wesley Professional. ISBN 978-0-321-75104-1.
- Matoušek, Jiří; Nešetřil, Jaroslav (1998). Discrete Mathematics. Oxford University Press. ISBN 978-0-19-850208-1.
- Obrenic, Bojana (2003-01-29). Practice Problems in Discrete Mathematics. Prentice Hall. ISBN 978-0-13-045803-2.
- Rosen, Kenneth H.; John G. Michaels (2000). Hand Book of Discrete and Combinatorial Mathematics. CRC PressI Llc. ISBN 978-0-8493-0149-0.
- Kenneth H. Rosen (2007). Discrete Mathematics: And Its Applications. McGraw-Hill College. ISBN 978-0-07-288008-3.
- Simpson, Andrew (2002). Discrete Mathematics by Example. McGraw-Hill Incorporated. ISBN 978-0-07-709840-7.
- Walicki, Michał (2011). Introduction to Mathematical Logic. Singapore: World Scientific Publishing. ISBN 9789814343879.
- Boolos, George; Burgess, John; Jeffrey, Richard (2002). Computability and Logic (4th изд.). Cambridge University Press. ISBN 9780521007580.
- Crossley, J.N.; Ash, C.J.; Brickhill, C.J.; Stillwell, J.C.; Williams, N.H. (1972). What is mathematical logic?. London, Oxford, New York City: Oxford University Press. ISBN 9780198880875. Zbl 0251.02001.
- Enderton, Herbert (2001). A mathematical introduction to logic (2nd изд.). Boston MA: Academic Press. ISBN 978-0-12-238452-3.
- Fisher, Alec (1982). Formal Number Theory and Computability: A Workbook. (suitable as a first course for independent study) (1st изд.). Oxford University Press. ISBN 978-0-19-853188-3.
- Hamilton, A.G. (1988). Logic for Mathematicians (2nd изд.). Cambridge University Press. ISBN 978-0-521-36865-0.
- Ebbinghaus, H.-D.; Flum, J.; Thomas, W. (1994). Mathematical Logic (2nd изд.). New York City: Springer. ISBN 9780387942582.
- Katz, Robert (1964). Axiomatic Analysis. Boston MA: D. C. Heath and Company.
- Mendelson, Elliott (1997). Introduction to Mathematical Logic (4th изд.). London: Chapman & Hall. ISBN 978-0-412-80830-2.
- Rautenberg, Wolfgang (2010). A Concise Introduction to Mathematical Logic (3rd изд.). New York City: Springer. ISBN 9781441912206. doi:10.1007/978-1-4419-1221-3.
- Schwichtenberg, Helmut (2003—2004). Mathematical Logic (PDF). Munich: Mathematisches Institut der Universität München. Приступљено 2016-02-24.
- Shawn Hedman, A first course in logic: an introduction to model theory, proof theory, computability, and complexity, Oxford University Press, (2004) ISBN 0-19-852981-3. Covers logics in close relation with computability theory and complexity theory
- van Dalen, Dirk (2013). Logic and Structure. Universitext. Berlin: Springer. ISBN 978-1-4471-4557-8. doi:10.1007/978-1-4471-4558-5.
- Andrews, Peter B. (2002). An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof (2nd izd.). Boston: Kluwer Academic Publishers. ISBN 978-1-4020-0763-7.
- Barwise, Jon, ur. (1989). Handbook of Mathematical Logic. Studies in Logic and the Foundations of Mathematics. Amsterdam: Elsevier. ISBN 9780444863881.
- Hodges, Wilfrid (1997). A shorter model theory. Cambridge University Press. ISBN 9780521587136.
- Jech, Thomas (2003). Set Theory: Millennium Edition. Springer Monographs in Mathematics. Berlin, New York: Springer. ISBN 9783540440857.
- Kleene, Stephen Cole.(1952), Introduction to Metamathematics. New York: Van Nostrand. (Ishi Press: 2009 reprint).
- Kleene, Stephen Cole (1967). Mathematical Logic. John Wiley. ISBN 0-486-42533-9. OCLC 523472.
- Shoenfield, Joseph R. (2001). Mathematical Logic (2nd izd.). A K Peters. ISBN 9781568811352. Nepoznati parametar
|orig-date=
ignorisan (pomoć) - Troelstra, Anne Sjerp; Schwichtenberg, Helmut (2000). Basic Proof Theory. Cambridge Tracts in Theoretical Computer Science (2nd izd.). Cambridge University Press. ISBN 978-0-521-77911-1.
- Augusto, Luis M. (2017). Logical consequences. Theory and applications: An introduction. London: College Publications. ISBN 978-1-84890-236-7.
- Boehner, Philotheus (1950). Medieval Logic. Manchester.
- Cohen, Paul J. (1966). Set Theory and the Continuum Hypothesis. Menlo Park CA: W. A. Benjamin.
- Cohen, Paul J. (2008). Set theory and the continuum hypothesis. Mineola NY: Dover Publications. ISBN 9780486469218. Nepoznati parametar
|orig-date=
ignorisan (pomoć) - J.D. Sneed, The Logical Structure of Mathematical Physics. Reidel, Dordrecht, 1971 (revised edition 1979).
- Davis, Martin (1973). „Hilbert's tenth problem is unsolvable”. The American Mathematical Monthly. 80 (3): 233—269. JSTOR 2318447. doi:10.2307/2318447.
Reprinted as an appendix in Davis, Martin (1985). Computability and Unsolvability. Dover. ISBN 9780486614717. - Felscher, Walter (2000). „Bolzano, Cauchy, Epsilon, Delta”. The American Mathematical Monthly. 107 (9): 844—862. JSTOR 2695743. doi:10.2307/2695743.
- Ferreirós, José (2001). „The Road to Modern Logic-An Interpretation” (PDF). Bulletin of Symbolic Logic. 7 (4): 441—484. JSTOR 2687794. S2CID 43258676. doi:10.2307/2687794. hdl:11441/38373. Arhivirano iz originala (PDF) 02. 02. 2023. g. Pristupljeno 20. 12. 2021.
- Hamkins, Joel David; Löwe, Benedikt (2007). „The modal logic of forcing”. Transactions of the American Mathematical Society. 360 (4): 1793—1818. S2CID 14724471. arXiv:math/0509616 . doi:10.1090/s0002-9947-07-04297-3.
- Katz, Victor J. (1998). A History of Mathematics. Addison–Wesley. ISBN 9780321016188.
- Morley, Michael (1965). „Categoricity in Power”. Transactions of the American Mathematical Society. 114 (2): 514—538. JSTOR 1994188. doi:10.2307/1994188 .
- Soare, Robert I. (1996). „Computability and recursion”. Bulletin of Symbolic Logic. 2 (3): 284—321. CiteSeerX 10.1.1.35.5803 . JSTOR 420992. doi:10.2307/420992.
- Solovay, Robert M. (1976). „Provability Interpretations of Modal Logic”. Israel Journal of Mathematics. 25 (3–4): 287—304. S2CID 121226261. doi:10.1007/BF02757006 .
- Woodin, W. Hugh (2001). „The Continuum Hypothesis, Part I” (PDF). Notices of the American Mathematical Society. 48 (6).
- Banach, Stefan; Tarski, Alfred (1924). „Sur la décomposition des ensembles de points en parties respectivement congruentes” (PDF). Fundamenta Mathematicae (na jeziku: francuski). 6: 244—277. doi:10.4064/fm-6-1-244-277 .
- Bochenski, Jozef Maria, ur. (1959). A Precis of Mathematical Logic. Synthese Library, Vol. 1. Prevod: Otto Bird. Dordrecht: Springer. ISBN 9789048183296. doi:10.1007/978-94-017-0592-9.
- Burali-Forti, Cesare (1897). A question on transfinite numbers. Reprinted in van Heijenoort 1976, str. 104–111
- Cantor, Georg (1874). „Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen” (PDF). Journal für die Reine und Angewandte Mathematik. 1874 (77): 258—262. S2CID 199545885. doi:10.1515/crll.1874.77.258.
- Carroll, Lewis (1896). Symbolic Logic. Kessinger Legacy Reprints. ISBN 9781163444955.
- Dedekind, Richard (1872). Stetigkeit und irrationale Zahlen (na jeziku: nemački). English translation as: "Consistency and irrational numbers".
- Dedekind, Richard (1888). Was sind und was sollen die Zahlen?. Two English translations:
- 1963 (1901). Essays on the Theory of Numbers. Beman, W. W., ed. and trans. Dover.
- 1996. In From Kant to Hilbert: A Source Book in the Foundations of Mathematics, 2 vols, Ewald, William B., ed., Oxford University Press: 787–832.
- Fraenkel, Abraham A. (1922). „Der Begriff 'definit' und die Unabhängigkeit des Auswahlsaxioms”. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (na jeziku: nemački). str. 253—257. Reprinted in English translation as "The notion of 'definite' and the independence of the axiom of choice" in van Heijenoort 1976, str. 284–289.
- Frege, Gottlob (1879), Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle a. S.: Louis Nebert. Translation: Concept Script, a formal language of pure thought modelled upon that of arithmetic, by S. Bauer-Mengelberg in van Heijenoort 1976.
- Frege, Gottlob (1884), Die Grundlagen der Arithmetik: eine logisch-mathematische Untersuchung über den Begriff der Zahl. Breslau: W. Koebner. Translation: J. L. Austin, 1974. The Foundations of Arithmetic: A logico-mathematical enquiry into the concept of number, 2nd ed. Blackwell.
- Gentzen, Gerhard (1936). „Die Widerspruchsfreiheit der reinen Zahlentheorie”. Mathematische Annalen. 112: 132—213. S2CID 122719892. doi:10.1007/BF01565428. Reprinted in English translation in Gentzen's Collected works, M. E. Szabo, ed., North-Holland, Amsterdam, 1969.
- Gödel, Kurt (1929). Über die Vollständigkeit des Logikkalküls [Completeness of the logical calculus]. doctoral dissertation. University Of Vienna.
- Gödel, Kurt (1930). „Die Vollständigkeit der Axiome des logischen Funktionen-kalküls” [The completeness of the axioms of the calculus of logical functions]. Monatshefte für Mathematik und Physik (na jeziku: nemački). 37: 349—360. S2CID 123343522. doi:10.1007/BF01696781.
- Gödel, Kurt (1931). „Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I” [On Formally Undecidable Propositions of Principia Mathematica and Related Systems]. Monatshefte für Mathematik und Physik (na jeziku: nemački). 38 (1): 173—198. S2CID 197663120. doi:10.1007/BF01700692.
- Gödel, Kurt (1958). „Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes”. Dialectica (na jeziku: nemački). 12 (3–4): 280—287. doi:10.1111/j.1746-8361.1958.tb01464.x . Reprinted in English translation in Gödel's Collected Works, vol II, Solomon Feferman et al., eds. Oxford University Press, 1993.
- van Heijenoort, Jean, ur. (1976). From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931 (3rd izd.). Cambridge MA: Harvard University Press. ISBN 9780674324497. (pbk.). Nepoznati parametar
|orig-date=
ignorisan (pomoć) - Hilbert, David (1899). Grundlagen der Geometrie (na jeziku: nemački). Leipzig: Teubner. English 1902 edition (The Foundations of Geometry) republished 1980, Open Court, Chicago.
- Hilbert, David (1929). „Probleme der Grundlegung der Mathematik”. Mathematische Annalen. 102: 1—9. S2CID 122870563. doi:10.1007/BF01782335. Arhivirano iz originala 08. 09. 2017. g. Pristupljeno 20. 12. 2021.
- Hilbert, David; Bernays, Paul (1934). Grundlagen der Mathematik. I. Die Grundlehren der mathematischen Wissenschaften. 40. Berlin, New York City: Springer. ISBN 9783540041344. JFM 60.0017.02. MR 0237246.
- Kleene, Stephen Cole (1943). „Recursive Predicates and Quantifiers”. Transactions of the American Mathematical Society. 53 (1): 41—73. JSTOR 1990131. doi:10.2307/1990131 .
- Lobachevsky, Nikolai (1840). Geometrishe Untersuchungen zur Theorie der Parellellinien (na jeziku: nemački). Reprinted in English translation as Robert Bonola, ur. (1955). „Geometric Investigations on the Theory of Parallel Lines”. Non-Euclidean Geometry. Dover. ISBN 0-486-60027-0.
- Löwenheim, Leopold (1915). „Über Möglichkeiten im Relativkalkül”. Mathematische Annalen (na jeziku: nemački). 76 (4): 447—470. ISSN 0025-5831. S2CID 116581304. doi:10.1007/BF01458217. Arhivirano iz originala 08. 09. 2017. g. Pristupljeno 20. 12. 2021. Translated as "On possibilities in the calculus of relatives" in Jean van Heijenoort (1967). A Source Book in Mathematical Logic, 1879–1931. Harvard Univ. Press. str. 228—251.
- Mancosu, Paolo, ur. (1998). From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the 1920s. Oxford University Press.
- Pasch, Moritz (1882). Vorlesungen über neuere Geometrie.
- Peano, Giuseppe (1889). Arithmetices principia, nova methodo exposita (na jeziku: litvanski).
- Richard, Jules (1905). „Les principes des mathématiques et le problème des ensembles”. Revue Générale des Sciences Pures et Appliquées (na jeziku: francuski). 16: 541. Reprinted in English translation as "The principles of mathematics and the problems of sets" in van Heijenoort 1976, str. 142–144.
- Skolem, Thoralf (1920). „Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen”. Videnskapsselskapet Skrifter, I. Matematisk-naturvidenskabelig Klasse (na jeziku: nemački). 6: 1—36.
- Soare, Robert Irving (22. 12. 2011). „Computability Theory and Applications: The Art of Classical Computability” (PDF). Department of Mathematics. University of Chicago. Arhivirano iz originala (PDF) 30. 06. 2022. g. Pristupljeno 23. 8. 2017.
- Swineshead, Richard (1498). Calculationes Suiseth Anglici (na jeziku: litvanski). Papie: Per Franciscum Gyrardengum.
- Tarski, Alfred (1948). A decision method for elementary algebra and geometry. Santa Monica CA: RAND Corporation.
- Turing, Alan M. (1939). „Systems of Logic Based on Ordinals”. Proceedings of the London Mathematical Society. 45 (2): 161—228. doi:10.1112/plms/s2-45.1.161. hdl:21.11116/0000-0001-91CE-3 .
- Weyl, Hermann (1918). Das Kontinuum. Kritische Untersuchungen über die Grund lagen der Analysis (na jeziku: nemački). Leipzig.
- Zermelo, Ernst (1904). „Beweis, daß jede Menge wohlgeordnet werden kann”. Mathematische Annalen (na jeziku: nemački). 59 (4): 514—516. S2CID 124189935. doi:10.1007/BF01445300. Arhivirano iz originala 05. 03. 2016. g. Pristupljeno 20. 12. 2021. Reprinted in English translation as "Proof that every set can be well-ordered" in van Heijenoort 1976, str. 139–141.
- Zermelo, Ernst (1908a). „Neuer Beweis für die Möglichkeit einer Wohlordnung”. Mathematische Annalen (na jeziku: nemački). 65: 107—128. ISSN 0025-5831. S2CID 119924143. doi:10.1007/BF01450054. Arhivirano iz originala 08. 09. 2017. g. Pristupljeno 20. 12. 2021. Reprinted in English translation as "A new proof of the possibility of a well-ordering" in van Heijenoort 1976, str. 183–198.
- Zermelo, Ernst (1908b). „Untersuchungen über die Grundlagen der Mengenlehre”. Mathematische Annalen. 65 (2): 261—281. S2CID 120085563. doi:10.1007/BF01449999. Arhivirano iz originala 08. 09. 2017. g. Pristupljeno 20. 12. 2021.
Spoljašnje veze
uredi- Discrete mathematics Arhivirano na sajtu Wayback Machine (29. avgust 2011) at the utk.edu Mathematics Archives, providing links to syllabi, tutorials, programs, etc.
- Iowa Central: Electrical Technologies Program Discrete mathematics for Electrical engineering.