Отворите главни мени

Прав угао

угао од 90 степени (π/2 радијана)

У геометрији и тригонометрији, прав угао је угао од тачно 90 степени,[1] који одговара четвртини круга.[2] Може бити дефинисан тако да таква два угла чине половину крга, или 180 степени. Термин води порекло из латинског језика angulus rectus, где rectus значи усправно, који се односи на вертикални правац према хоризонталној основној линији. Блиско повезани и важни геометријски концепти су перпендикуларне линије, које формирају прав угао у њиховој тачки пресека, и ортогоналност, која је својство формирања правих углова. Присуство правог угла у троуглу је фактор који дефинише правоугли троугао,[3] чинећи прав угао основом тригонометрије.

Прав угао

У елементарној геометријиУреди

Правоугаоник има четири права угла, као и квадрат који поред тога има четири странице једнаке дужине.

Питагорина теорема исказује како одредити када је троугао правоугли троугао.

ЕуклидУреди

Прави углови су фундаментални у Еуклидовим елементима. Они су дефинисани у Књизи 1, дефиниција 10, која такође дефинише перпендикуларне линије. Дефиниција 10 не користи нумеричка мерења степена, већ се дотиче онога што прав угао јесте, две праве линије које се секу да би формирале два једнака и два суседна угла.[4] Праве линије које формирају праве углове се зову перпендикуларне линије.[5] Еуклид користи праве углове у дефиницијама 11 и 12 како би дефинисао оштре углове (они су мањи од правих) и тупе углове (они су већи од правих).[4] Два угла су комплементарна ако њихов збир чини прав угао.[6]

Правило 3-4-5Уреди

Кроз историју, столари и зидари су познавали брз начин да ли је прав угао. Метод је базиран на најпопуларнијем Питагоријском тројцу (3,4,5) и такозваном „Правилу 3-4-5 “. Када из правог угла повучемо дуж дугу три јединице дужине, а дуж друге стране дуж дугу четири јединице дужине, створиће се хипотенуза (дуга линија насупрот правог угла која повезује крај мерних дужина). Ово мерење се може извешити брзо и без техничких инструмената. Геометријски закон иза мерења је Питагорина теорема („Квадрат хипотенузе правоуглог троугла једнак је збиру квадрата две суседне странице“ ).

Талесова теоремаУреди

Талесова теорема исказује да је угао уписан у полукруг (са вертексом на полукругу и његовим дефинисаним крацима који пролазе кроз крајње тачке полукруга) прав угао.

РеференцеУреди

  1. ^ „Right angle”. Right angle. Приступљено 11. 12. 2018. 
  2. ^ Wentworth 1895, стр. 11.
  3. ^ Wentworth 1895, стр. 40.
  4. 4,0 4,1 Heath, T.L. (1908). "Euclid's elements". Cambridge. стр. 181. 
  5. ^ Heath, T.L. (1908). 'Euclid's elements". Cambridge. стр. 181. 
  6. ^ Wentworth 1895, стр. 9.

ЛитератураУреди


Спољашње везеУреди