Fosamprenavir je organsko jedinjenje, koje sadrži 25 atoma ugljenika i ima molekulsku masu od 585,607 Da.[1][2][3][4][5][6][7][8][9][10]

Fosamprenavir
Klinički podaci
Prodajno imeLexiva, Telzir
Drugs.comMonografija
Način primeneOralno
Farmakokinetički podaci
Poluvreme eliminacije7,7 h
IzlučivanjeRenalno, fekalno
Identifikatori
CAS broj226700-79-4 ДаY
ATC kodJ05AE07 (WHO)
PubChemCID 131536
DrugBankDB01319 ДаY
ChemSpider116245 ДаY
ChEMBLCHEMBL1664 ДаY
Hemijski podaci
FormulaC25H36N3O9PS
Molarna masa585,607
  • CC(C)CN(C[C@@H](OP(O)(O)=O)[C@H](CC1=CC=CC=C1)NC(=O)O[C@H]1CCOC1)S(=O)(=O)C1=CC=C(N)C=C1
  • InChI=1S/C25H36N3O9PS/c1-18(2)15-28(39(33,34)22-10-8-20(26)9-11-22)16-24(37-38(30,31)32)23(14-19-6-4-3-5-7-19)27-25(29)36-21-12-13-35-17-21/h3-11,18,21,23-24H,12-17,26H2,1-2H3,(H,27,29)(H2,30,31,32)/t21-,23-,24+/m0/s1 ДаY
  • Key:MLBVMOWEQCZNCC-OEMFJLHTSA-N ДаY

Osobine уреди

Osobina Vrednost
Broj akceptora vodonika 10
Broj donora vodonika 4
Broj rotacionih veza 14
Particioni koeficijent[11] (ALogP) 2,4
Rastvorljivost[12] (logS, log(mol/L)) -4,0
Polarna površina[13] (PSA, Å2) 195,9

Reference уреди

  1. ^ Smith, K. Y.; Weinberg, W. G.; Dejesus, E.; Fischl, M. A.; Liao, Q.; Ross, L. L.; Pakes, G. E.; Pappa, K. A.; Lancaster, C. T.; ALERT (COL103952) Study Team (2008). „Fosamprenavir or atazanavir once daily boosted with ritonavir 100 mg, plus tenofovir/Emtricitabine, for the initial treatment of HIV infection: 48-week results of ALERT”. AIDS Research and Therapy. 5: 5. PMC 2365957 . PMID 18373851. doi:10.1186/1742-6405-5-5. 
  2. ^ Hoffman, R. M.; Umeh, O. C.; Garris, C.; Givens, N.; Currier, J. S. (2007). „Evaluation of sex differences of fosamprenavir (With and without ritonavir) in HIV-infected men and women”. HIV Clinical Trials. 8 (6): 371—380. PMID 18042502. S2CID 39443559. doi:10.1310/hct0806-371. 
  3. ^ Chapman, T. M.; Plosker, G. L.; Perry, C. M. (2004). „Fosamprenavir: A review of its use in the management of antiretroviral therapy-naive patients with HIV infection”. Drugs. 64 (18): 2101—2124. PMID 15341507. S2CID 242117144. doi:10.2165/00003495-200464180-00014. 
  4. ^ Furfine, E. S.; Baker, C. T.; Hale, M. R.; Reynolds, D. J.; Salisbury, J. A.; Searle, A. D.; Studenberg, S. D.; Todd, D.; Tung, R. D.; Spaltenstein, A. (2004). „Preclinical pharmacology and pharmacokinetics of GW433908, a water-soluble prodrug of the human immunodeficiency virus protease inhibitor amprenavir”. Antimicrobial Agents and Chemotherapy. 48 (3): 791—798. PMC 353103 . PMID 14982766. doi:10.1128/AAC.48.3.791-798.2004. 
  5. ^ Sension, M. (2004). „Initial therapy for human immunodeficiency virus: Broadening the options”. HIV Clinical Trials. 5 (2): 99—111. PMID 15116286. S2CID 38671302. doi:10.1310/0H45-8QWU-FAUD-7E36. 
  6. ^ Wood, R.; Arasteh, K.; Stellbrink, H. J.; Teofilo, E.; Raffi, F.; Pollard, R. B.; Eron, J.; Yeo, J.; Millard, J.; Wire, M. B.; Naderer, O. J. (2004). „Six-week randomized controlled trial to compare the tolerabilities, pharmacokinetics, and antiviral activities of GW433908 and amprenavir in human immunodeficiency virus type 1-infected patients”. Antimicrobial Agents and Chemotherapy. 48 (1): 116—123. PMC 310156 . PMID 14693528. doi:10.1128/AAC.48.1.116-123.2004. 
  7. ^ Falcoz, C.; Jenkins, J. M.; Bye, C.; Hardman, T. C.; Kenney, K. B.; Studenberg, S.; Fuder, H.; Prince, W. T. (2002). „Pharmacokinetics of GW433908, a prodrug of amprenavir, in healthy male volunteers”. Journal of Clinical Pharmacology. 42 (8): 887—898. PMID 12162471. S2CID 20373020. doi:10.1177/009127002401102803. 
  8. ^ Wire, M. B.; Shelton, M. J.; Studenberg, S. (2006). „Fosamprenavir : Clinical pharmacokinetics and drug interactions of the amprenavir prodrug”. Clinical Pharmacokinetics. 45 (2): 137—168. PMID 16485915. doi:10.2165/00003088-200645020-00002. 
  9. ^ Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Neveu, V.; Djoumbou, Y.; Eisner, R.; Guo, A. C.; Wishart, D. S. (2011). „DrugBank 3.0: A comprehensive resource for 'omics' research on drugs”. Nucleic Acids Research. 39 (Database issue): D1035—41. PMC 3013709 . PMID 21059682. doi:10.1093/nar/gkq1126. 
  10. ^ Wishart, D. S.; Knox, C.; Guo, A. C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. (2008). „DrugBank: A knowledgebase for drugs, drug actions and drug targets”. Nucleic Acids Research. 36 (Database issue): D901—6. PMC 2238889 . PMID 18048412. doi:10.1093/nar/gkm958. 
  11. ^ Ghose, A.K.; Viswanadhan V.N. & Wendoloski, J.J. (1998). „Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragment Methods: An Analysis of AlogP and CLogP Methods”. J. Phys. Chem. A. 102: 3762—3772. doi:10.1021/jp980230o. 
  12. ^ Tetko, I. V.; Tanchuk, V. Y.; Kasheva, T. N.; Villa, A. E. (2001). „Estimation of aqueous solubility of chemical compounds using E-state indices”. Journal of Chemical Information and Computer Sciences. 41 (6): 1488—1493. PMID 11749573. doi:10.1021/ci000392t. 
  13. ^ Ertl, P.; Rohde, B.; Selzer, P. (2000). „Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties”. Journal of Medicinal Chemistry. 43 (20): 3714—3717. PMID 11020286. doi:10.1021/jm000942e. 

Literatura уреди

Spoljašnje veze уреди


 Molimo Vas, obratite pažnju na važno upozorenje
u vezi sa temama iz oblasti medicine (zdravlja).