Отворите главни мени

Medicinska hemija ili farmaceutska hemija je disciplina na raskršću hemije, farmakologije, i biologije koja obuhvata dizajn, sintezu i razvoj farmaceutiskih lekova. Medicinska hemija se bavi identifikacijom, sintezom i razvojem novih hemijskih entiteta podesnih za terapeutsku upotrebu. Ona takođe obuhvata izučavanje postojećih lekova, njihovih bioloških osovina, i njihovih kvantitativnih odnosa strukture i aktivnosti (QSAR).[1][2]

Jedinjenja koja se koriste kao lekovi su prvenstveno organska jedinjenja, koja mogu da budu mali organski molekuli i biopolimeri. Međutim, i za neorganska jedinjenja i jedinjenja koja sadrže metale je nađeno da mogu da budu korisni lekovi. Na primer, cisplatin serija kompleksa koji sadrže platinu se koristi u tretmanu raka, i litijum bazirani medikamenti imaju dugu tradiciju u lečenju niza mentalnih oboljenja.

Medicinska hemija je visoko interdisciplinarna nauka koja kombinuje organsku hemiju sa biohemijom, računarskom hemijom, farmakologijom, farmakognozijom, molekularnom biologijom, statistikom, i fizičkom hemijom.

Proces razvoja lekovaУреди

OtkrivanjeУреди

Otkrivanje je identifikacija novih aktivnih jedinjenja, koja se često nazivaju „pogoci“. Oni se tipično nalaze testiranjem velikog broja jedinjenja (kolekcija jedinjenja) za željene biološke osobine.[3] Dok postoje brojni pristupi identifikaciji pogodataka, neke od najuspešnijih tehnika su zasnovane na hemijskoj i biološkoj intuiciji koja je razvijena tokom godina rigoroznog hemijsko-biološkog treninga. Inicijalna pozitivna jedinjenja mogu da potiču od nalaženja novih vidova primene postojećih agenasa u novim patološkim procesima,[4] i od zapažanja bioloških dejstava novih ili postojećih prirodnih produkata, kao što su biljke,[5] životinje, ili gljive.[6] Pogoci mogu takođe da dolaze iz sintetičkih hemijskih kolekcija, kao što su kolekcije kreirane putem kombinatorne hemije, ili istorijskih kolekcija hemijskih jedinjenja, koje se masovno testiraju za aktivnost na određenom biološkom cilju.

OptimizacijaУреди

Sledeći stupanj u razvoju lekova su dalje hemijske modifikacije s ciljem poboljšanja bioloških, ADME i fiziko-hemijskih osobina date kolekcije jedinjenja. Hemijske modifikacije mogu da poboljšaju prepoznavanje i geometriju vezivanja (farmakofore) kandidata, njihov afinitet i farmakokinetiku, ili njihovu reaktivnost i stabilnost ka metaboličkoj degradacije. Brojni metodi se koriste za kvalitativno i kvantitativno predviđanje metaboličke stabilnosti[7], kao i niza drugih ADMET osobina. Modeli kvantitativnih odnosa strukture i aktivnosti (QSAR) zajedno sa farmakofornom analizom pomažu nalaženje vodećih jedinjenja, koja pokazuju najveću potentnost i selektivnost, imaju najbolje farmakokinetičke osobine i najmanju toksičnost.

RazvojУреди

Završni stupanj se sastoji od pripreme vodećih jedinjenja za upotrebu u kliničkim ispitivanjima. Razvoj obuhvata optimizaciju sintetičkog pristupa za proizvodnju većih količina materijala, i pripremu podesne formulacije leka.

ReferenceУреди

  1. ^ Thomas L. Lemke; David A. Williams, ур. (2007). Foye's Principles of Medicinal Chemistry (6. изд.). Baltimore: Lippincott Willams & Wilkins. ISBN 0781768799. 
  2. ^ Hardman JG, Limbird LE, Gilman AG (2001). Goodman & Gilman's The Pharmacological Basis of Therapeutics (10. изд.). New York: McGraw-Hill. ISBN 0071354697. doi:10.1036/0071422803. 
  3. ^ Hughes, Jp; Rees, S; Kalindjian, Sb; Philpott, Kl (1. 3. 2011). „Principles of early drug discovery”. British Journal of Pharmacology (на језику: енглески). 162 (6): 1239—1249. ISSN 1476-5381. PMC 3058157 . PMID 21091654. doi:10.1111/j.1476-5381.2010.01127.x. 
  4. ^ Johnston, Kelly L.; Ford, Louise; Umareddy, Indira; Townson, Simon; Specht, Sabine; Pfarr, Kenneth; Hoerauf, Achim; Altmeyer, Ralf; Taylor, Mark J. (1. 12. 2014). „Repurposing of approved drugs from the human pharmacopoeia to target Wolbachia endosymbionts of onchocerciasis and lymphatic filariasis”. International Journal for Parasitology: Drugs and Drug Resistance. Includes articles from two meetings: "Anthelmintics: From Discovery to Resistance", pp. 218--315, and "Global Challenges for New Drug Discovery Against Tropical Parasitic Diseases", pp. 316--357. 4 (3): 278—286. PMC 4266796 . PMID 25516838. doi:10.1016/j.ijpddr.2014.09.001. 
  5. ^ Cragg, Gordon M.; Newman, David J. (1. 6. 2013). „Natural products: A continuing source of novel drug leads”. Biochimica et Biophysica Acta (BBA) - General Subjects. 1830 (6): 3670—3695. PMC 3672862 . PMID 23428572. doi:10.1016/j.bbagen.2013.02.008. 
  6. ^ Harvey, Alan L. (1. 10. 2008). „Natural products in drug discovery”. Drug Discovery Today. 13 (19–20): 894—901. PMID 18691670. doi:10.1016/j.drudis.2008.07.004. 
  7. ^ Smith, J.; Stein, V. (2009). „SPORCalc: A development of a database analysis that provides putative metabolic enzyme reactions for ligand-based drug design”. Computational Biology and Chemistry. 33 (2): 149—159. PMID 19157988. doi:10.1016/j.compbiolchem.2008.11.002. 

LiteraturaУреди

  • D. Radulović, S. Vladimirov, Farmaceutska hemija I deo, Farmaceutski fakultet, Beograd, 2005.
  • S. Vladimirov, D. Živanov-Stakić, Farmaceutska hemija II deo, Farmaceutski fakultet, Beograd, 2006.
  • John M. Beale; John Block, ур. (2010). Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry (Twelfth изд.). London, Philadelphia, New York,: Lippincott Williams & Wilkins. ISBN 978-0-7817-7929-6. 
  • Watson, David G. (2005). Pharmaceutical Analysis: A Textbook for Pharmacy Students and Pharmaceutical Chemists (second изд.). Edinburg: Churchill Livingstone. ISBN 978-0-443-07445-5. 

Spoljašnje vezeУреди