Фанерозоик
Фанерозоик је најмлађи еон у геохронолошкој подели историје Земље. Рачуна се да је почео пре око 545 милиона година, а траје и данас. Фанерозоик је обележен богатством и разноврношћу биљног и животињског света. Као почетак фанерозоика узето је време када су се први пут појавиле животиње са љуштуром. Фанерозоик је подељен на три ере: палеозоик, мезозоик и кенозоик. Прва периода палеозоика назива се камбријум, па се по томе време пре фанерозоика назива прекамбријум.
ЕтимологијаУреди
Термин фанерозоик потиче од старогрчких речи φανερός (phanerós), што значи видљиво, и ζωή (zōḗ), што значи живот; пошто се некада веровало да је живот почео у камбријуму, првом периоду овог еона. Термин „фанерозоик“ сковао је 1930. амерички геолог Џорџ Халкот Чедвик (1876–1953).[1][2]
Протерозојско-фанерозојска границаУреди
Протерозојско-фанерозојска граница је пре 541 милиона година.[3] У 19. веку, граница је постављена у време појаве првих фосила животиња у изобиљу (метазоа), али је идентификовано неколико стотина група (таксона) метазоа претходног протерозојског еона од када је систематско проучавање ових облика почело tokom 1950-их.[4][5]
Ере фанерозоикаУреди
Фанерозоик је подељен на три ере: палеозоик, мезозоик и кенозоик, које су даље подељене на 12 периода. Палеозоик карактерише еволуцију риба, водоземаца и гмизаваца. Мезозоик карактерише еволуција гуштера, крокодила, змија, корњача, сисара и диносауруса (укључујући птице). Кенозоик почиње изумирањем нептичјих диносауруса и карактерише еволуцију великог диверзитета код птица и сисара. Људи су се појавили и еволуирали током најновијег дела кенозоика.
Палеозојска ераУреди
Палеозоик је време у историји Земље када су еволуирали сложени облици живота, први удахнули кисеоник на сувом и када су претече вишећелијског живота на Земљи почеле да се диверзификују. У палеозојској ери постоји шест периода: камбријум, ордовицијум, силур, девон, креда и перм.[6]
Камбријумски периодУреди
Камбријум је први период палеозојске ере и трајао је од пре 541 милиона до 485 милиона година. Камбријум је изазвао брзу експанзију разноликости животиња, у догађају познатом као камбријска експлозија, током којег је еволуирао највећи број планова животињског тела у једном периоду у историји Земље. Сложене алге су еволуирале, а фауном су доминирали оклопни зглавкари, као што су трилобити. Скоро сви раздели морских животиња еволуирали су у овом периоду. Током овог времена, суперконтинент Панотија је почео да се распада, и његов већи део се касније поново комбиновао у суперконтинент Гондвана.[7]
Ордовицијумски периодУреди
Ордовицијум се протеже од пре 485 милиона до 444 милиона година. Ордовицијум је био време у историји Земље у којем су многе групе које и данас преовладавају еволуирале или диверзификовале се, као што су примитивни главоношци, рибе и корали. Овај процес је познат као велики ордовицијумски догађај биодиверзификације, или GOBE. Трилобити су почели да бивају замењени зглобним брахиоподима, а и криноиди су постајали све важнији део фауне.[8] Први зглавкари испузали су на обалу да колонизују Гондвану, континент без животињског света. До краја ордовицијума, Гондвана се померила са екватора на Јужни пол, а Лаурентија се сударила са Балтиком, затворивши океан Јапетус. Глацијација Гондване је резултирала великим падом нивоа мора, убијајући сав живот који је настао дуж њене обале. Глацијација је створила ледену Земљи, што је довело до ордовицијско-силурског изумирања, током којег је изумрло 60% морских бескичмењака и 25% породица. Иако једно од најсмртоноснијих масовних изумирања у историји Земље, О-С изумирање није изазвало дубоке еколошке промене између периода.[9]
Силурски периодУреди
Силур је трајао од пре 444 милиона до 419 милиона година, током кога је дошло до загревања од ледене Земље. У овом периоду дошло је до масовне еволуције риба, при чему су рибе без чељусти постале бројније, и ране чељусне и слатководне рибе су се појавиле у фосилним записима. Чланконожци су остали у изобиљу, а неке групе, као што су еуриптериди, постале су вршне грабљивице. Потпуно копнени живот успоставио се на копну, укључујући ране паучњаке, гљиве и стоноге (многоноге чланконошце). Еволуција васкуларних биљака, као што је Cooksonia, омогућила је биљкама да стекну упориште и на копну. Ове ране копнене биљке су претече свих биљака на копну. Током овог времена постојала су четири континента: Гондвана (Африка, Јужна Америка, Аустралија, Антарктик, Индија), Лаурентија (Северна Америка са деловима Европе), Балтика (остатак Европе) и Сибирија (Северна Азија).[10]
Види јошУреди
РеференцеУреди
- ^ Chadwick, G.H. (1930). „Subdivision of geologic time”. Bulletin of the Geological Society of America. 41: 47—48.
- ^ Harland, B.; et al., ур. (1990). A geologic timescale 1989 . Cambridge: Cambridge University Press. стр. 30. ISBN 0-521-38361-7.
- ^ „Phanerozoic Eon | geochronology”. Encyclopædia Britannica (на језику: енглески). Архивирано из оригинала на датум 2018-03-17. Приступљено 2018-03-16.
- ^ Glaessner, Martin F. (1961). „Precambrian Animals”. Scientific American. 204 (3): 72—78. Bibcode:1961SciAm.204c..72G. doi:10.1038/scientificamerican0361-72.
- ^ Geyer, Gerd; Landing, Ed (2017). „The Precambrian–Phanerozoic and Ediacaran–Cambrian boundaries: a historical approach to a dilemma”. Geological Society, London, Special Publications. 448 (1): 311—349. Bibcode:2017GSLSP.448..311G. S2CID 133538050. doi:10.1144/SP448.10.
- ^ University of California. „Paleozoic”. University of California. Архивирано из оригинала на датум 2015-05-02.
- ^ University of California. „Cambrian”. University of California. Архивирано из оригинала на датум 2012-05-15.
- ^ Cooper, John D.; Miller, Richard H.; Patterson, Jacqueline (1986). A Trip Through Time: Principles of Historical Geology. Columbus: Merrill Publishing Company. стр. 247, 255–259. ISBN 978-0-675-20140-7.
- ^ University of California. „Ordovician”. University of California. Архивирано из оригинала на датум 2015-05-02.
- ^ University of California. „Silurian”. University of California. Архивирано из оригинала на датум 2017-06-16.
ЛитератураУреди
- Markov, Alexander V.; Korotayev, Andrey V. (2007). „Phanerozoic marine biodiversity follows a hyperbolic trend”. Palaeoworld. 16 (4): 311—318. doi:10.1016/j.palwor.2007.01.002.
- Miller, K. G.; Kominz, M. A.; Browning, J. V.; Wright, J. D.; Mountain, G. S.; Katz, M. E.; Sugarman, P. J.; Cramer, B. S.; Christie-Blick, N; Pekar, S. F.; et al. (2005). „The Phanerozoic record of global sea-level change” (PDF). Science. 310 (5752): 1293—1298. Bibcode:2005Sci...310.1293M. PMID 16311326. S2CID 7439713. doi:10.1126/science.1116412.
- Amthor, J. E.; Grotzinger, John P.; Schröder, Stefan; Bowring, Samuel A.; Ramezani, Jahandar; Martin, Mark W.; Matter, Albert (2003). „Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman”. Geology. 31 (5): 431—434. Bibcode:2003Geo....31..431A. doi:10.1130/0091-7613(2003)031<0431:EOCANA>2.0.CO;2.
- Collette, J. H.; Gass, K. C.; Hagadorn, J. W. (2012). „Protichnites eremita unshelled? Experimental model-based neoichnology and new evidence for a euthycarcinoid affinity for this ichnospecies”. Journal of Paleontology. 86 (3): 442—454. S2CID 129234373. doi:10.1666/11-056.1.
- Collette, J. H.; Hagadorn, J. W. (2010). „Three-dimensionally preserved arthropods from Cambrian Lagerstatten of Quebec and Wisconsin”. Journal of Paleontology. 84 (4): 646—667. S2CID 130064618. doi:10.1666/09-075.1.
- Getty, P. R.; Hagadorn, J. W. (2008). „Reinterpretation of Climactichnites Logan 1860 to include subsurface burrows, and erection of Musculopodus for resting traces of the trailmaker”. Journal of Paleontology. 82 (6): 1161—1172. S2CID 129732925. doi:10.1666/08-004.1.
- Gould, S. J. (1989). Wonderful Life: the Burgess Shale and the Nature of Life . New York: Norton. ISBN 9780393027051.
- Howe, John Allen (1911). „Cambrian System”. Ур.: Chisholm, Hugh. Encyclopædia Britannica (на језику: енглески). 05 (11 изд.). Cambridge University Press. стр. 86—89.
- Ogg, J. (јун 2004). „Overview of Global Boundary Stratotype Sections and Points (GSSPs)”. Архивирано из оригинала на датум 23. 4. 2006. Приступљено 30. 4. 2006.
- Owen, R. (1852). „Description of the impressions and footprints of the Protichnites from the Potsdam sandstone of Canada”. Geological Society of London Quarterly Journal. 8 (1–2): 214—225. S2CID 130712914. doi:10.1144/GSL.JGS.1852.008.01-02.26.
- Peng, S.; Babcock, L.E.; Cooper, R.A. (2012). „The Cambrian Period” (PDF). The Geologic Time Scale. Архивирано из оригинала (PDF) на датум 12. 2. 2015. Приступљено 14. 1. 2015.
- Schieber, J.; Bose, P. K.; Eriksson, P. G.; Banerjee, S.; Sarkar, S.; Altermann, W.; Catuneau, O. (2007). Atlas of Microbial Mat Features Preserved within the Clastic Rock Record. Elsevier. стр. 53–71. ISBN 9780444528599.
- Yochelson, E. L.; Fedonkin, M. A. (1993). „Paleobiology of Climactichnites, and Enigmatic Late Cambrian Fossil”. Smithsonian Contributions to Paleobiology. 74 (74): 1—74. doi:10.5479/si.00810266.74.1.
- Emiliani, Cesare. (1992). Planet Earth : Cosmology, Geology, & the Evolution of Life & the Environment. Cambridge University Press. (Paperback Edition ISBN 0-521-40949-7)
- Mikulic, DG, DEG Briggs, and J Kluessendorf. 1985. A new exceptionally preserved biota from the Lower Silurian of Wisconsin, USA. Philosophical Transactions of the Royal Society of London, 311B:75-86.
- Moore, RA; Briggs, DEG; Braddy, SJ; Anderson, LI; Mikulic, DG; Kluessendorf, J (2005). „A new synziphosurine (Chelicerata: Xiphosura) from the Late Llandovery (Silurian) Waukesha Lagerstatte, Wisconsin, USA”. Journal of Paleontology. 79 (2): 242—250. doi:10.1666/0022-3360(2005)079<0242:anscxf>2.0.co;2.
- Chlupáč, Ivo; Hladil, Jindrich (јануар 2000). „The global stratotype section and point of the Silurian-Devonian boundary”. CFS Courier Forschungsinstitut Senckenberg. Приступљено 7. 12. 2020.
- Kaiser, Sandra (1. 4. 2009). „The Devonian/Carboniferous boundary stratotype section (La Serre, France) revisited”. Newsletters on Stratigraphy. 43 (2): 195—205. doi:10.1127/0078-0421/2009/0043-0195. Приступљено 7. 12. 2020.
- Paproth, Eva; Feist, Raimund; Flajs, Gerd (децембар 1991). „Decision on the Devonian-Carboniferous boundary stratotype” (PDF). Episodes. 14 (4): 331—336. doi:10.18814/epiiugs/1991/v14i4/004 .
- Haq, B. U.; Schutter, SR (2008). „A Chronology of Paleozoic Sea-Level Changes”. Science. 322 (5898): 64—68. Bibcode:2008Sci...322...64H. PMID 18832639. S2CID 206514545. doi:10.1126/science.1161648.
Спољашње везеУреди
Фанерозоик на Викимедијиној остави. |
Супереон | Еон | Ера | Периода | Епоха | Кат | Најзначајнији догађаји | Почетак, милиони година |
---|---|---|---|---|---|---|---|
Фанерозоик | Кенозоик[1] | Квартар[2][3] | Холоцен | Атлантик | Завршава се последњи период глацијације и развија се људска цивилизација. Завршава се квартарно ледено доба и почиње садашњи интерглацијал. Настаје пустиња Сахара на простору пређашњих савана, развија се пољопривреда, настају први градови. Палеолитске/неолитске (Камено доба) културе почињу да се развијају од 10 хиљадите године п.н.е, које се су заслужне за каснији настанак Бакарном (3500 год. п.н.е.) и Бронзаном добу (2500 год. п.н.е.). Током Гвозденог доба (1200 год. п.н.е.) развијају се културе у погледу сложености и техничких достигнућа. Развијају се многе праисторијске културе широм света, што је коначно довело до развоја класичне античке културе, као што је Римско царство, па културе средњег века, све до данашњих. Мало ледено доба проузроковало је кретко захлађење на северној хемисфери од 1400—1850. године. Вулкан на планини Тамбора је имао ерупцију 1815. године, што је довело до „године без Сунца“ (1816.) у Европи и Северној Америци. Количина угљен-диоксида у атмосфери порасла је са 100 ppmv, колико је било на крају последње глацијације, на 385 ppmv, колико је данас. То је, према некимa, изазвало глобално загревање и климатске промене. Пораст количине угљен-диоксида тумачи се антропогеним фактором, односно индустријском револуцијом. | 0.011430 ± 0.00013 | |
Бореал | |||||||
Плеистоцен | Висла | Процват, а затим, и изумирање великог броја великих сисара (плеистоценска мегафауна). Одвија се еволуција и настанак савременог човека. Квартарно ледено доба наставља се глацијацијама и интерглацијацијама (праћено порастом количине угљен-диоксида у ваздуху). Последњи глацијални максимум (пре 30 000 година), последњи глацијални период (пре 18000—15000 година). Гашење људских култура из каменог доба, повећање техничке сложености у односу на претходне културе из леденог доба, поготово на Медитерану и у Европи. Супервулкан Тоба еруптирао је пре 75000 година, што је изазвало вулканску зиму која је довело људски род (Homo) на ивицу изумирања. | 0.126 ± 0.005* | ||||
Ем | 0.500? | ||||||
Зала | 1.806 ± 0.005* | ||||||
Холштајн | 2.588 ± 0.005* | ||||||
Елстер | 0.500? | ||||||
Кромер | 0.500? | ||||||
Менап | 0.500? | ||||||
Вал | 0.500? | ||||||
Ебурон | 0.500? | ||||||
Тегелен | 0.500? | ||||||
Бриген | 0.500? | ||||||
Неоген | Плиоцен | Занклински | Интензивирање садашњих климатских услова. Садашње ледено доба почиње пре око 2,58 милиона година. Хладна и влажна клима. Појављују се аустралопитеци и многи савремени родови сисара и мекушаца. Појављује се Homo habilis. | 3.600 ± 0.005* | |||
Пјачентин | 5.332 ± 0.005* | ||||||
Желас | 5.332 ± 0.005* | ||||||
Миоцен | Понт | Умерено хладна клима, условљена повременим леденим добима. Орогенеза на северној хемисфери. Током овог периода развијају се савремене фамилије сисара и птица. Развијају се коњи и мастодонти. Траве су опште присутне. Појављују се први човеколики мајмуни. Догађа се Кајкоуршка орогенеза којом настају Јужни Новозеландски Алпи, а која траје и данас. У Европи се успорава алпска орогенеза, али траје све до данас. Карпатском орогенезом настају Карпати у централној и источној Европи. У Грчкој и Егејском мору успорава се хеленска орогенеза, али траје све до данас. Током средњег миоцена догодило се изумирање живог света. Услед велике распрострањености шума снижава се концентрација угљен-диоксида у атмосфери са 650 ppmv на 100 ppmv. | 7.246 ± 0.05* | ||||
Панон | 11.608 ± 0.05* | ||||||
Сармат | 13.65 ± 0.05* | ||||||
Баден | 15.97 ± 0.05* | ||||||
Карпат | 20.43 ± 0.05* | ||||||
Отнанг | 23.03 ± 0.05* | ||||||
Егенбург | 23.03 ± 0.05* | ||||||
Егер | 23.03 ± 0.05* | ||||||
Палеоген | Олигоцен | Хат | Топла клима која се постепено мења у хладну. Брза еволуција и диверзификација фауне, посебно сисара. Догађа се адаптивна радијација и распростирање савремених скривеносеменица. | 28.4 ± 0.1* | |||
Рупел | 33.9 ± 0.1* | ||||||
Еоцен | Приабон | Промена климе, прелаз ка хладној. Процват примитивних сисара (као што су редови Creodontia, Condylarthra, Uintatheria) који настављају да се развијају током целе епохе. Појављивање неколико „савремених“ фамилија сисара (нпр. примитивни китови). Појава првих трава. Поновна глацијација Антарктика и формирање његове ледене капе. Догађајем Азола[4] отпочиње ледено доба, и хладна клима, која се јавља до данашњих дана услед распростирања и распадања морских алги које су допринеле великом смањењу угљен-диоксида у атмосфери, и то са 3800 ppmv на 650 ppmv. Крај Ларамијске и Севирске орогенезе Стеновитих планина у Северној Америци. У Европи почиње алпска орогенеза. Почиње Хеленска орогенеза у Грчкој и Егејском мору.
|
37.2 ± 0.1* | ||||
Бартон | 40.4 ± 0.2* | ||||||
Лутет | 48.6 ± 0.2* | ||||||
Ипер | 55.8 ± 0.2* | ||||||
Палеоцен | Танет | Тропска клима. Одиграва се адаптивна радијација сисара, омогућена нестајањем диносауруса. Први велики сисари (већи од медведа). Почиње Алпска орогенеза у Европи и Азији. Индијски потконтинент се судара за Азијом пре 55 милиона година, а Хималајска орогенеза почиње пре 52—48 милиона година. | 58.7 ± 0.2* | ||||
Селанд | 61.7 ± 0.3* | ||||||
Дански | 65.5 ± 0.3* | ||||||
Мезозоик | Креда | Горња | Мастрихт | Развијају се биљке скривеносеменице, као и нове групе инсеката. Појављују се савременије праве кошљорибе. Присутни су амонити, белемнити, рудисти, шкољке и морски јежеви. Много нових типова диносауруса (тираносаурус, титаносаурус, хадросауруси и цератопсиди) се развија на копну, као и савремени крокодили; У мору су се појавиле Mosasauria и савремене ајкуле. Примитивне птице постепено замењују птеросауре. Појављују се торбари, кљунари и плацентални сисари. Распада се Гондвана. Почетак ларамијске и севијерске орогенезе Стеновитих планина. Количина угљен-диоксида у ваздуху блиска данашњој. | 70.6 ± 0.6* | ||
Кампан | 83.5 ± 0.7* | ||||||
Сантон | 85.8 ± 0.7* | ||||||
Конијак | 89.3 ± 1.0* | ||||||
Турон | 93.5 ± 0.8* | ||||||
Ценоман | 99.6 ± 0.9* | ||||||
Доња | Алб | 112.0 ± 1.0* | |||||
Апт | 125.0 ± 1.0* | ||||||
Барем | 130.0 ± 1.5* | ||||||
Отрив | 136.4 ± 2.0* | ||||||
Валендин | 140.2 ± 3.0* | ||||||
Беријас | 145.5 ± 4.0* | ||||||
Јура | Малм | Титон | Од биљака, честе су голосеменице (нарочито четинари, бенетити и цикаси) и папратњаче. Развијен велики број типова диносауруса, као што су сауроподи, карносауруси и стегосауруси. Чести су сисари, али су малих димензија. Појављују се прве птице и гуштери. Даље се развијају ихтиосауруси и плезиосауруси. У морима су најчешће шкољке, амонити и белемнити. Врло су чести и морски јежеви, заједно са морским криновима, морским звездама, сунђерима, и теребратулидним и ринхонелидним брахиоподама. Пангеа се дели на Гондвану и Лауразију. Количина угљен-диоксида у ваздуху била је 4-5 пута већа од данашње (1200-1500ppmv). | 150.8 ± 4.0* | |||
Кимериџ | 155.7 ± 4.0* | ||||||
Оксфорд | 161.2 ± 4.0* | ||||||
Догер | Келовеј | 164.7 ± 4.0 | |||||
Бат | 167.7 ± 3.5* | ||||||
Бајес | 171.6 ± 3.0* | ||||||
Ален | 175.6 ± 2.0* | ||||||
Лијас | Тоарс | 183.0 ± 1.5* | |||||
Пленсбах | 189.6 ± 1.5* | ||||||
Синемур | 196.5 ± 1.0* | ||||||
Хетанж | 199.6 ± 0.6* | ||||||
Тријас | Горњи | Ретски | Од животиња на копну доминирају архосаури као диносауруси, у океанима ихтиосауруси и нотосауруси, а у ваздуху птеросауруси. Конодонти постају мањи и све више личе на сисаре. Појављују се први сисари и крокодили. На Земљи влада Dicrodium флора. Јављају се велики представници водоземаца (Temnospondyli). У морима су одлично заступљени амонити. Појављују се савремени корали и праве кошљорибе. У Јужној Америци траје Андска орогенеза, а кимеријска у Азији. Почиње рангитотска орогенеза на Новом Зеланду. Завршава се хантер-бовенска орогенеза у Северној Аустралији, Краљичиним острвима и Новом Јужном Велсу (260-225Ма). | 203.6 ± 1.5* | |||
Норички | 216.5 ± 2.0* | ||||||
Карнијски | 228.0 ± 2.0* | ||||||
Средњи | Ладински | 237.0 ± 2.0* | |||||
Анизијски | 245.0 ± 1.5* | ||||||
Доњи | Олењошки | 249.7 ± 1.5* | |||||
Индски | 251.0 ± 0.7* | ||||||
Палеозоик | Перм | Горњи | Татарски | Kонтиненти се спајају у суперконтинент Пангеу, формирaju се Апалачи. Крај перм-карбонске глацијације. Повећава се бројност синапсида (пеликосаурус и терапсиде), док парарептили и водоземци остају присутни. Током средњег перма су голосеменице и маховине замениле флору која је формирала угљоносне слојеве. Развијају се тврдокрилци и двокрилци. Марински живот буја на топлим плитким гребенима; бројне су фораминифере, шкољке, амоноиди, брахиоподe. Догађај Пермско-тријаског изумирања десио се пре око 251 милион година, када је изумрло око 95% живог света на Земљи укључујући све трилобите, граптолите и бластоиде. Завршава се Уралска орогенеза на граници Европе и Азије. Почиње хантер-бовенска орогенеза у Аустралији чиме настају Макдонелове планине. | 253.8 ± 0.7* | ||
Казански | 260.4 ± 0.7* | ||||||
Уфим | 260.4 ± 0.7* | ||||||
Доњи | Кунгур | 265.8 ± 0.7* | |||||
Артиншки | 268.4 ± 0.7* | ||||||
Сакмар | 270.6 ± 0.7* | ||||||
Аселски | 268.4 ± 0.7* | ||||||
Карбон | Горњи | Стефан | Дешава се нагла адаптивна радијација крилатих инсеката, од којих су поједини (Protodonata, Palaeodictyoptera) веома крупни. Појављују се први копнени водоземци, као и шуме крупних папратњача. У морима су од животиња чести гонијатити, брахиоподе, бриозое, шкољке и корали. Развијају се и фораминифере са љуштурицом. Највећи ниво кисеоника и атмосфери. Уралска орогенеза у Европи и Азији. Херцинска орогенеза се одиграва током средњег и касног доњег карбона. | 303.9 ± 0.9* | |||
Вестфал | 306.5 ± 1.0* | ||||||
Намир | 306.5 ± 1.0* | ||||||
Доњи | Визеј | Велико примитивно дрвеће, први копнени четвороножци, и морске шкорпије живе угљоносне приобалне мочваре. Lobe-finned rhizodonts are dominant big fresh-water predators. У океанима, ране ајкуле су распрострањене и разнолике; echinoderms (нарочито криноиде и бластоиде) обилне. Корали, бриозое, гонијатиде и брахиоподе (Productida, Spiriferida, итд.) веома честе, али трилобити и наутилоиди опадају. Глацијација у источној Гондвани. Tuhua орогенеза на Новом Зеланду опада. | 318.1 ± 1.3* | ||||
Турнеј | 306.5 ± 1.0* | ||||||
Девон | Горњи | Фамен | Појављују се папратњаче (пречице, раставићи и праве папрати), као и семене папрати. Паралелно, настају инсекти. Светским океаном доминирају строфоменидне и атрипидне брахиоподе, ругозни и табулатни корали и морски љиљани. Гонијатитни амоноиди су веома бројни, а појављују се и главоношци налик на сипе. Опада бројност трилобита и риба са оклопом, док се повећава бројност кичмењака (риба) са вилицом. Појављују се рани водени представници водоземаца. "Old Red Continent" of Euramerica. Beginning of Acadian Orogeny for Anti-Atlas Mountains of North Africa, and Appalachian Mountains of North America, also the Antler, Variscan, and Tuhua Orogeny in New Zealand. | 374.5 ± 2.6* | |||
Франски | 385.3 ± 2.6* | ||||||
Средњи | Живе | 391.8 ± 2.7* | |||||
Ајфелски | 397.5 ± 2.7* | ||||||
Доњи | Емски | 407.0 ± 2.8* | |||||
Прашки | 411.2 ± 2.8* | ||||||
Лохковски | 416.0 ± 2.8* | ||||||
Силур | Горњи | Ладлоски | На копну се појављују прве васкуларне биљке (риније), стоноге и артроплеуриде. Мора насељавају остракоде и први кичмењаци са вилицом. Еуриптериде достижу гигантске размере. Табулатни и ругозни корали, брахиоподе и морски љиљани су чести у морима. Фауна трилобита и мекушаца је разноврсна, за разлику од сиромашне фауне граптолита. Почетак Каледонске орогенезе, у току које настају планине у Енглеској, Ирској, Велсу и Шкотској (Каледониди) и Скандинавских планина. | 418.7 ± 2.7* | |||
Средњи | Венлочки | 421.3 ± 2.6* | |||||
Доњи | Ландоверски | 426.2 ± 2.4* | |||||
Ордовицијум | Горњи | Ашгил | Даља диверзификација бескичмењака. Бројни су представници корала, брахиопода, шкољки, трилобита, остракода, бриозоа, бодљокожаца и граптолита. Појављују се прве копнене биљке и гљиве. Почетком периоде постојало је ледено доба. | 445.6 ± 1.5* | |||
Карадок | 468.1 ± 1.6* | ||||||
Средњи | Ландил | 471.8 ± 1.6* | |||||
Ланвирин | 471.8 ± 1.6* | ||||||
Доњи | Арениг | 478.6 ± 1.7* | |||||
Тремадок | 488.3 ± 1.7* | ||||||
Камбријум | Горњи | Посдамијан | У морима се дешава интензивна адаптивна радијација и диверзификација организама („камбријумска експлозија"). Настаје већина савремених типова бескичмењака и тип хордата (група Conodonta). Коралне Archaeocyatha су честе па изумиру. Аномалокариде живе као џиновски предатори, већина едијакарске фауне изумире. Настаје Гондвана. Слаби Petermann орогенеза на Аустралијском континенту (пре 550-535 милиона година). Ross орогенеза на Антарктику. Adelaide Geosyncline (Delamerian Orogeny), majority of orogenic activity from 514-500 MYA. Lachlan Orogeny on Australian Continent, c. 540-440 MYA. Atmospheric Carbon Dioxide content roughly 20-35 times present-day (Holocene) levels (6000 ppmv compared to today's 385 ppmv). | 496.0 ± 2.0* | |||
Средњи | Акадијан | 513.0 ± 2.0 | |||||
Доњи | Георгијан | 542.0 ± 1.0* | |||||
Прекам- бријум |
Протеро- зоик |
Нео- протерозоик |
Едијакаријум | Из овог периода потичу добри и релативно бројни фосили првих вишећелијских животиња. Едијакарска фауна се развија у морима. Постоје фосили трагова вероватно црвоклике врсте Trichophycus pedum и слични. Први представници сунђера. Бројни су енигматични представници едијакарске фауне (попут Dickinsonia) без уочене везе са савременим представницима. Taconic Orogeny in North America. Aravalli Range orogeny in Indian Subcontinent. Beginning of Petermann Orogeny on Australian Continent. Beardmore Orogeny in Antarctica, 633-620 MYA. | 630 +5/-30* | ||
Криогенијум | Могући период снежна грудва Земље. Фосили су још ретки. Родина почиње да се распада. Касна Рукер / Нимрод орогенеза на Антарктику се сужава. | 850 | |||||
Тонијум | Rodinia supercontinent persists. Trace fossils of simple multi-celled eukaryotes. First radiation of dinoflagellate-like acritarchs. Grenville Orogeny tapers off in North America. Pan-African orogeny in Africa. Lake Ruker / Nimrod Orogeny in Antarctica, 1000 ± 150 MYA. Edmundian Orogeny (c. 920 - 850 MYA), Gascoyne Complex, Western Australia. Adelaide Geosyncline laid down on Australian Continent, beginning of Adelaide Geosyncline (Delamerian Orogeny) in that continent. | 1000 | |||||
Мезо- протерозоик |
Стенијум | Narrow highly metamorphic belts due to orogeny as Rodinia formed. Late Ruker / Nimrod Orogeny in Antarctica possibly begins. Musgrave Orogeny (c. 1080 MYA), Musgrave Block, Central Australia. | 1200 | ||||
Ектазијум | Platform covers continue to expand. Green algae colonies in the seas. Grenville Orogeny in North America. | 1400 | |||||
Калимијум | Platform covers expand. Barramundi Orogeny, MacArthur Basin, Northern Australia, and Isan Orogeny, c. 1600 MYA, Mount Isa Block, Queensland. | 1600 | |||||
Палео- протерозоик |
Статеријум | First complex single-celled life: protists with nuclei. Columbia is the primordial supercontinent. Kimban Orogeny in Australian Continent ends. Yapungku Orogeny on North Yilgarn craton, in Western Australia. Mangaroon Orogeny, 1680-1620 MYA, on the Gascoyne Complex in Western Australia. Kararan Orogeny (1650- MYA), Gawler Craton, South Australia. | 1800 | ||||
Оросиријум | The atmosphere became oxygenic. Vredefort and Sudbury Basin asteroid impacts. Much orogeny. Penokean and Trans-Hudsonian Orogenies in North America. Early Ruker Orogeny in Antarctica, 2000 - 1700 MYA. Glenburgh Orogeny, Glenburgh Terrane, Australian Continent c. 2005 - 1920 MYA. Kimban Orogeny, Gawler craton in Australian Continent begins. | 2050 | |||||
Риацијум | Bushveld Formation formed. Huronian glaciation. | 2300 | |||||
Сидеријум | Oxygen Catastrophe: banded iron formations formed. Sleaford Orogeny on Australian Continent, Gawler Craton 2440-2420 MYA. | 2500 | |||||
Архаик | Неоархаик | Stabilization of most modern cratons; possible mantle overturn event. Insell Orogeny, 2650 ± 150 MYA. Abitibi greenstone belt in present-day Ontario and Quebec begins to form, stablizes by 2600 MYA. | 2800 | ||||
Мезоархаик | First stromatolites (probably colonial cyanobacteria). Oldest macrofossils. Humboldt Orogeny in Antarctica. Blake River Megacaldera Complex begins to form in present-day Ontario and Quebec, ends by roughly 2696 MYA. | 3200 | |||||
Палеоархаик | Из овог периода потичу најстарији потврђени микрофосили и прве познате бактерије које производе кисеоник. Можда су се у овом периоду формирали најстарији кратони на земљи (попут Канадског штита и кратона Пилбара). Рејнерова орогенеза на Антарктику. | 3600 | |||||
Еоархаик | Јављају се први могући микрофосили једноставних једноћелијских облика живота (вероватно бактерије и можда археје). | 3800 | |||||
Хадајк |
Доњи имбријум | Ова ера се преклапа са крајем „позног јаког бомбардовања” (лунарне катаклизме) унутрашњих планета сунчевог система. | c.3850 | ||||
Нектаријум | Ова ера је добила назив према лунарној геолошкој временској скали када су настали Нектаријски басен и остали највећи месечеви басени услед догађаја великих удара. | c.3920 | |||||
Басенска група | Настала најстарија позната стена (4.030 Ma). Први облици живота и само-размножавајућих РНК молекула су могли настати на Земљи око 4.000 Ma током овe ере. Напијер орогенеза на Антарктику, пре око 4.000 ± 200 милиона година. | c.4150 | |||||
Криптик. | Најстарији познати минерал је Циркон, 4.406±8 Ma. Формирање Месеца (4.533 Ma), претпоставља се услед великог удара. Формирање Земље (4.567,17 до 4.570 Ma) | c.4570 |
НапоменеУреди
- ^ Неоген и палеоген према старој подели припадали су терцијару који се више не издваја.
- ^ Квартарне творевине се издвајају и приказују на геолошким картама према генези.
- ^ Трају преговори по питању горње границе плиоцена односно доње границе плеистоцена.
- ^ Према студији везаној за Арктичку климу, Биолошког института, Универзитета у Утрехту (енгл. Institute of Environmental Biology , Utrecht University) азола папрат је имала значајну улогу у промени климе пре око 55 милиона година која се променила из тропске у хладну. Та папрат је имала велико распрострањење чиме је допринела обарању концентрације угљен-диоксида у ваздуху.