Хемијска реакција

Реакција термита користећи гвожђе(III) оксид. Искре које лете напоље су глобуле растопљеног гвожђа које прати дим.
Алуминијум и бакар сулфат формирају бакар и алуминијум сулфат - илустрација шеме реакције

Хемијске реакције представљају трајне промене у структури полазних супстанци (реактаната или реагујућих супстанци) и настајање нових супстанци (производа) које се по саставу и својствима разликују од полазних супстанци.[1][2][3][4] Класично, хемијске реакције обухватају промене које укључују само положај електрона у формирању и прекиду хемијских веза између атома, без промене језгара (без промене присутних елемената), а често се могу описати хемијском једначином. Нуклеарна хемија је поддисциплина хемије која укључује хемијске реакције нестабилних и радиоактивних елемената где се могу јавити и електронске и нуклеарне промене.

Супстанце које су у почетку укључене у хемијску реакцију називају се реактанти или реагенси. Хемијске реакције обично карактеришу хемијске промене, а оне дају један или више производа, који обично имају својства различита од реактаната. Реакције се често састоје од низа појединачних поткорака, такозваних елементарних реакција, а информације о тачном току деловања део су механизма реакције. Хемијске реакције су описане хемијским једначинама, које симболично представљају почетне материјале, крајње производе, а понекад и међупроизводе и реакционе услове.

Хемијске реакције се дешавају карактеристичном брзином реакције при датој температури и хемијској концентрацији. Типично, брзине реакције се повећавају са порастом температуре јер је на располагању више топлотне енергије да би се постигла енергија активације неопходна за прекидање веза између атома.

Реакције се могу одвијати ка унапред или уназад, све док се не окончају или постигну равнотежу. Реакције које се настављају у правцу према напред да би се приближиле равнотежи често се описују као спонтане и не захтевају унос слободне енергије да би се одвијале. Неспонтане реакције захтевају унос слободне енергије да би одвијале (примери укључују пуњење батерије применом спољног извора електричне енергије, или фотосинтезу вођену апсорпцијом електромагнетног зрачења у облику сунчеве светлости).

Реакција се може класификовати као редокс кад у њој долази до оксидације и редукције, и супротно ако нема оксидације и редукције. Већина једноставних редокс реакција може се класификовати као реакција комбинације, разградње или појединачног померања.

Током хемијске синтезе користе се различите хемијске реакције да би се добио жељени производ. У биохемији узастопни низ хемијских реакција (где је производ једне реакције реактант следеће реакције) формира метаболичке путеве. Ове реакције често катализују протеински ензими. Ензими повећавају стопе биохемијских реакција, тако да су метаболичке синтезе и разградње које су немогуће у уобичајеним условима, могу појавити на температурама и концентрацијама присутним у ћелији.

Општи концепт хемијске реакције проширен је на реакције између ентитета мањих од атома, укључујући нуклеарне реакције, радиоактивне распаде и реакције између елементарних честица, како је описано квантном теоријом поља.

ИсторијаУреди

 
Антоан Лавоазје је развио теорију сагоревања као хемијске реакције са кисеоником.

Хемијске реакције попут сагоревања у ватри, ферментације и редукције руда до метала биле су познате још у антици. Почетне теорије о трансформацији материјала развили су грчки филозофи, као што је Теорија четири елемента Емпедокла, наводећи да је било која супстанца састављена од четири основна елемента - ватре, воде, ваздуха и земље. У средњем веку хемијске трансформације проучавали су алхемичари. Они су нарочито покушали да олово претворе у злато, за шта су користили реакције олова и легура олова и бакра са сумпором.[5]

Вештачка производња хемијских супстанци већ је била централни циљ средњовековних алхемичара.[6] Примери укључују синтезу амонијум хлорида из органских супстанци како је описано у делима (око 850–950) који се приписују Џабир ибн Хајану,[7] или производњи минералних киселина попут сумпорне и азотне киселине од каснијих алхемичара, почев од око 1300.[8] Производња минералних киселина подразумевала је загревање сулфатних и нитратних минерала као што су бакар сулфат, стипса и шалитра. У 17. веку Јохан Рудолф Глаубер је производио хлороводоничну киселину и натријум сулфат реакцијом сумпорне киселине и натријум хлорида. Развојем процеса оловне коморе 1746. и Лебланковог процеса, омогућавајући велику производњу сумпорне киселине и натријум карбоната, респективно, хемијске реакције су уведене у индустрију. Даља оптимизација технологије сумпорне киселине резултирала је контактним процесом 1880-их,[9] а Хаберов процес је развијен 1909–1910 за синтезу амонијака.[10]

Од 16. века истраживачи, међу којима су Жан Баптиста ван Хелмонт, Роберт Бојл и Исак Њутн, покушавали су да успоставе теорије експериментално посматраних хемијских трансформација. Флогистонску теорију предложио је 1667. године Јохан Јоахим Бехер. Њом је претпостављено постојање елемента сличног ватри названог „флогистон“, који се налазио у запаљивим телима и ослобађао током сагоревања. То се показало погрешним, што је 1785. године доказао Антоан Лавоазје који је пронашао тачно објашњење сагоревања као реакције са кисеоником из ваздуха.[11]

Жозеф Луј Ге-Лисак је препознао 1808. да гасови увек реагују у одређеном међусобном односу. На основу ове идеје и атомске теорије Џона Далтона и Жозефа Пруста је развио закон сталних односа маса, што је касније резултирало концептима стехиометрије и хемијских једначина.[12]

Подела хемијских реакцијаУреди

Хемијске реакције се деле у три групе и то:

  • Оксидо-редукционе реакције
  • Комлексне реакције (мења се координациони број), које се деле на три подргупе:
    • комплексне реакције у ужем смислу
    • протолитичке реакције
    • реакције преципитације и растварања
  • Хемијске реакције при којима долази до дисоцијације и асоцијације молекула, атома и јона.

Најпознатији типови реакцијаУреди

  • Реакције синтезе су хемијске реакције при којима из атома и молекула различитих супстанци настају молекули нових супстанци, опште једначине:
А+Б=АБ
  • Реакције анализе су хемијске реакције при којима се молекули једне супстанце разлажу на атоме или молекуле других супстанци, опште једначине:
АБ-А+Б
  • Реакције просте измене су просте хемијске реакције у којима атоми просте супстанце замењују атоме елемената у молекулима сложене супстанце, опште једначине::
АБ+Ц=АЦ+Б
  • Реакције двоструких измена су хемијске реакције у којима молекули различитих супстанци реагују, а као производ реакције добијају се нове сложене супстанце.
  • Реакције супституције су хемијске реакције у којима се један атом у молекулу замењује другим атомом.
  • Реакције адиције су хемијске реакције код којих се врши везивање молекула једне супстанце на молекул друге супстанце.
  • Реакције полимеризације су хемијске реакције карактеристичне за незасићена једињења, при којима долази до изградње великих молекула који се састоје из неколико полазних молекула.

Енергетске промене у хемијским реакцијамаУреди

Хемијске реакције одигравају се са променом супстанци и са одређеним топлотним ефектом, при чему се ослобађа енергија или троши (везује или отпушта). Уколико се приликом реакције троши или ослобађа топлота онда се говори о термохемијским реакцијама. Количина топлоте која се у току хемијске реакције ослобађа или везује назива се топлота реакције.

Хемијске реакције које се одигравају ослобађањем топлоте називају се егзотермне реакције. Хемијске реакције које се одигравају са везивањем топлоте називају се ендотермне реакције. Ако је хемијска реакција у једном смеру ендотермна у другом је егзотермна и обрнуто.

Види јошУреди

РеференцеУреди

  1. ^ Međunarodna unija za čistu i primenjenu hemiju. "chemical reaction". Kompendijum Hemijske Terminologije Internet edition.
  2. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (II изд.). Oxford: Butterworth-Heinemann. ISBN 0080379419. 
  3. ^ Clayden, Jonathan; Greeves, Nick; Warren, Stuart; Wothers, Peter (2001). Organic Chemistry (I изд.). Oxford University Press. ISBN 978-0-19-850346-0. 
  4. ^ Smith, Michael B.; March, Jerry (2007). Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th изд.). New York: Wiley-Interscience. ISBN 0-471-72091-7. 
  5. ^ Weyer, J. (1973). „Neuere Interpretationsmöglichkeiten der Alchemie”. Chemie in Unserer Zeit. 7 (6): 177—181. doi:10.1002/ciuz.19730070604. 
  6. ^ See Newman, William R. (2004). Promethean Ambitions: Alchemy and the Quest to Perfect Nature. Chicago: University of Chicago Press. ISBN 9780226575247. 
  7. ^ Kraus, Paul (1942—1943). Jâbir ibn Hayyân: Contribution à l'histoire des idées scientifiques dans l'Islam. I. Le corpus des écrits jâbiriens. II. Jâbir et la science grecque. Cairo: Institut Français d'Archéologie Orientale. ISBN 9783487091150. OCLC 468740510. , vol. II, pp. 41–42.
  8. ^ Karpenko, Vladimír; Norris, John A. (2002). „Vitriol in the History of Chemistry”. Chemické listy. 96 (12): 997—1005. 
  9. ^ Friedman, Leonard J.; Friedman, Samantha J. (2008). The History of the Contact Sulfuric Acid Process (PDF). Boca Raton, Florida: Acid Engineering & Consulting, Inc. 
  10. ^ Stranges, Anthony N. (2000). „Germany's synthetic fuel industry, 1935–1940”. Ур.: Lesch, John E. The German Chemical Industry in the Twentieth Century. Kluwer Academic Publishers. стр. 170. ISBN 978-0-7923-6487-0. 
  11. ^ Brock, pp. 34–55
  12. ^ Brock, pp. 104–107

ЛитератураУреди

Спољашње везеУреди