Granisetron je organsko jedinjenje, koje sadrži 18 atoma ugljenika i ima molekulsku masu od 312,409 Da.[1][2][3][4][5]

Granisetron
Klinički podaci
Drugs.comMonografija
Način primeneIntravenozno, oralno
Farmakokinetički podaci
Poluvreme eliminacije4-6 h
Izlučivanje48% renalno, 38% fekalno
Identifikatori
CAS broj109889-09-0 ДаY
ATC kodA04AA02 (WHO)
PubChemCID 3510
IUPHAR/BPS2300
DrugBankDB00889 ДаY
ChemSpider3390 ДаY
KEGGC07023 ДаY
ChEMBLCHEMBL519643 ДаY
Hemijski podaci
FormulaC18H24N4O
Molarna masa312,409
  • CN1N=C(C(=O)NC2CC3CCCC(C2)N3C)C2=CC=CC=C12
  • InChI=1S/C18H24N4O/c1-21-13-6-5-7-14(21)11-12(10-13)19-18(23)17-15-8-3-4-9-16(15)22(2)20-17/h3-4,8-9,12-14H,5-7,10-11H2,1-2H3,(H,19,23) ДаY
  • Key:MFWNKCLOYSRHCJ-UHFFFAOYSA-N ДаY
Fizički podaci
Tačka topljenja219 °C (426 °F)
Osobina Vrednost
Broj akceptora vodonika 3
Broj donora vodonika 1
Broj rotacionih veza 2
Particioni koeficijent[6] (ALogP) 2,4
Rastvorljivost[7] (logS, log(mol/L)) -3,6
Polarna površina[8] (PSA, Å2) 50,2

Reference

уреди
  1. ^ Gan TJ: Selective serotonin 5-HT3 receptor antagonists for postoperative nausea and vomiting: are they all the same? CNS Drugs. 2005;19(3):225-38. PMID 15740177
  2. ^ Tan M: Granisetron: new insights into its use for the treatment of chemotherapy-induced nausea and vomiting. Expert Opin Pharmacother. 2003 Sep;4(9):1563-71. PMID 12943486
  3. ^ Feyer P, Seegenschmiedt MH, Steingraeber M: Granisetron in the control of radiotherapy-induced nausea and vomiting: a comparison with other antiemetic therapies. Support Care Cancer. 2005 Sep;13(9):671-8. Epub 2005 Jul 26. PMID 16044252
  4. ^ Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS (2011). „DrugBank 3.0: a comprehensive resource for omics research on drugs”. Nucleic Acids Res. 39 (Database issue): D1035—41. PMC 3013709 . PMID 21059682. doi:10.1093/nar/gkq1126. 
  5. ^ David S. Wishart; Craig Knox; An Chi Guo; Dean Cheng; Savita Shrivastava; Dan Tzur; Bijaya Gautam; Murtaza Hassanali (2008). „DrugBank: a knowledgebase for drugs, drug actions and drug targets”. Nucleic acids research. 36 (Database issue): D901—6. PMC 2238889 . PMID 18048412. doi:10.1093/nar/gkm958. 
  6. ^ Ghose, A.K.; Viswanadhan V.N. & Wendoloski, J.J. (1998). „Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragment Methods: An Analysis of AlogP and CLogP Methods”. J. Phys. Chem. A. 102: 3762—3772. doi:10.1021/jp980230o. 
  7. ^ Tetko IV, Tanchuk VY, Kasheva TN, Villa AE (2001). „Estimation of Aqueous Solubility of Chemical Compounds Using E-State Indices”. Chem Inf. Comput. Sci. 41: 1488—1493. PMID 11749573. doi:10.1021/ci000392t. 
  8. ^ Ertl P.; Rohde B.; Selzer P. (2000). „Fast calculation of molecular polar surface area as a sum of fragment based contributions and its application to the prediction of drug transport properties”. J. Med. Chem. 43: 3714—3717. PMID 11020286. doi:10.1021/jm000942e. 

Literatura

уреди

Spoljašnje veze

уреди


 Molimo Vas, obratite pažnju na važno upozorenje
u vezi sa temama iz oblasti medicine (zdravlja).