Десогестрел је органско једињење, које садржи 22 атома угљеника и има молекулску масу од 310,473 Da.[1][2][3][4]

Десогестрел
Клинички подаци
Drugs.comМонографија
Начин применеОрално
Фармакокинетички подаци
Полувреме елиминације27,8 х
Идентификатори
CAS број54024-22-5 ДаY
ATC кодG03AC09 (WHO)
PubChemCID 40973
DrugBankDB00304 ДаY
ChemSpider37400 ДаY
KEGGC07629 ДаY
ChEBICHEBI:4453 ДаY
ChEMBLCHEMBL1533 ДаY
Хемијски подаци
ФормулаC22H30O
Моларна маса310,473
  • [H][C@@]12CC[C@@](O)(C#C)[C@@]1(CC)CC(=C)[C@]1([H])[C@@]3([H])CCCC=C3CC[C@@]21[H]
  • InChI=1S/C22H30O/c1-4-21-14-15(3)20-17-9-7-6-8-16(17)10-11-18(20)19(21)12-13-22(21,23)5-2/h2,8,17-20,23H,3-4,6-7,9-14H2,1H3/t17-,18-,19-,20+,21-,22-/m0/s1 ДаY
  • Key:RPLCPCMSCLEKRS-BPIQYHPVSA-N ДаY
Физички подаци
Тачка топљења1.095 °C (2.003 °F)
Osobina Vrednost
Broj akceptora vodonika 1
Broj donora vodonika 1
Broj rotacionih veza 1
Particioni koeficijent[5] (ALogP) 5,8
Растворљивост[6] (logS, log(mol/L)) -4,9
Поларна површина[7] (PSA, Å2) 20,2

Референце

уреди
  1. ^ Korhonen T, Tolonen A, Uusitalo J, Lundgren S, Jalonen J, Laine K: The role of CYP2C and CYP3A in the disposition of 3-keto-desogestrel after administration of desogestrel. Br J Clin Pharmacol. 2005 Jul;60(1):69-75. PMID 15963096
  2. ^ Gentile DM, Verhoeven CH, Shimada T, Back DJ: The role of CYP2C in the in vitro bioactivation of the contraceptive steroid desogestrel. J Pharmacol Exp Ther. 1998 Dec;287(3):975-82. PMID 9864282
  3. ^ Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS (2011). „DrugBank 3.0: a comprehensive resource for omics research on drugs”. Nucleic Acids Res. 39 (Database issue): D1035—41. PMC 3013709 . PMID 21059682. doi:10.1093/nar/gkq1126. 
  4. ^ David S. Wishart; Craig Knox; An Chi Guo; Dean Cheng; Savita Shrivastava; Dan Tzur; Bijaya Gautam; Murtaza Hassanali (2008). „DrugBank: a knowledgebase for drugs, drug actions and drug targets”. Nucleic acids research. 36 (Database issue): D901—6. PMC 2238889 . PMID 18048412. doi:10.1093/nar/gkm958. 
  5. ^ Гхосе, А.К.; Висwанадхан V.Н. & Wендолоски, Ј.Ј. (1998). „Предицтион оф Хyдропхобиц (Липопхилиц) Пропертиес оф Смалл Органиц Молецулес Усинг Фрагмент Метходс: Ан Аналyсис оф АлогП анд ЦЛогП Метходс”. Ј. Пхyс. Цхем. А. 102: 3762—3772. дои:10.1021/јп980230о. 
  6. ^ Tetko IV, Tanchuk VY, Kasheva TN, Villa AE (2001). „Estimation of Aqueous Solubility of Chemical Compounds Using E-State Indices”. Chem Inf. Comput. Sci. 41: 1488—1493. PMID 11749573. doi:10.1021/ci000392t. 
  7. ^ Ertl P.; Rohde B.; Selzer P. (2000). „Fast calculation of molecular polar surface area as a sum of fragment based contributions and its application to the prediction of drug transport properties”. J. Med. Chem. 43: 3714—3717. PMID 11020286. doi:10.1021/jm000942e. 

Литература

уреди

Спољашње везе

уреди


 Молимо Вас, обратите пажњу на важно упозорење
у вези са темама из области медицине (здравља).