Građevinski materijal

Материјал који се може користити у грађевинарству. У природном стању то су на пример: глина, песак, дрво.

Građevinski materijal je svaki materijal koji se može upotrebiti u građevinarstvu. Mnoge supstance koje se javljaju prirodno, kao što su glina, kamen, pesak i drvo, čak i grančice i lišće, korištene su za izgradnju zgrada. Osim prirodno prisutnih materijala, koriste se mnogi veštački proizvedeni materijali, neki od koji su u većoj meri, a neki u manjoj meri sintetički. Proizvodnja građevinskog materijala je uhodana industrija u mnogim zemljama i upotreba ovih materijala se tipično segmentira u specifične specijalnosti, kao što su stolarija, izolacija, vodovod i krovni radovi. Oni obezbeđuju strukturu staništa i struktura, uključujući domove.[1]

Beton i metalna armatura korištena za pravljenje poda.
Drvena crkva u Bodružalu u Slovačkoj.
Ovaj zid u Bikon Hilu u Bostonu sadrži različite tipove cigle i kamenih temelja.

Podela uredi

Po poreklu uredi

Najvažniji prirodni građevinski materijali su: drvo, kamen, pesak i šljunak, a najvažniji veštački materijali su: cement, beton, čelik, aluminijum, staklo, opeka, kreč i gips.

Prema nameni uredi

Po sastavu uredi

  • prosti građevinski materijali;
  • složeni građevinski materijali (koji nastaju spajanjem prostih: npr. beton nastaje mešavinom cementa, šljunka i vode).

Po konstruktivnim svojstvima uredi

  • noseći građevinski materijali;
  • vezivni građevinski materijali.

Prirodni građevinski materijali uredi

Prirodni građevinski materijali (drvo, kamen, pesak, šljunak i glina) su materijali koji se mogu ugraditi u građevinske objekte bez prerade. Koriste se kao sirovine za proizvodnju veštačkih građevinskih materijala.

Drvo uredi

Drvo je jedan od najstarijih prirodnih građevinskih materijala. U ranijem periodu ljudske civilizacije, drvo je korišćeno za izradu koliba, sojenica, brvnara i dr. Danas se drvo uglavnom koristi za izradu stubova, greda, podnih i zidnih obloga, krovne konstrukcije, građevinske stolarije (vrata, prozori...), oplate prilikom betoniranja i dr.

Osobine drveta u građevinarstvu uredi

  • velika tvrdoća u poređenju sa malom težinom;
  • čvrstoća;
  • laka obradljivost;
  • niska toplotna i zvučna provodljivost.

Drvo se i danas često koristi u građevinarstvu i ima ogromnu prednost nad drugim materijalima.

Nedostatak drveta uredi

Jedini nedostatak drveta je zapaljivost i manji otpor na vlagu, gljivice i insekte.

Kamen uredi

Kamen je, takođe, jedan od najstarijih građevinskih materijala koji se dobija očvršćavanjem mešavine cementa kao vezivnog materijala, vode i agregata (šljunak, pesak, drobljen kamen, šljaka, drobljena opeka i dr). Kamen je najtrajniji građevinski materijal.

Koristio ga je praistorijski čovek za izgradnju svojih naseobina. Danas postoje građevine od kamena stare nekoliko hiljada godina (piramide). Kamen se u prirodi nalazi u velikim količinama. Vadi se u kamenolomima

Najpoznatije vrste kamena su: granit, krečnjak, peščar, mermer...

Podela kamena uredi

  • obrađen kamen;
  • neobrađen kamen.

Neobrađen kamen se upotrebljava u građevinarstvu pri izradi temelja, nosećih zidova, nasipa, podloga puteva i dr.

Obrađen kamen može biti: lomljen, drobljen, mleven, poliran, brušen, sitan kamenčić i pesak.

Veštački građevinski materijali uredi

Pečene cigle i blokovi od gline uredi

 
Kamara pečenih cigala.
 
Glineni blokovi (ponekad se nazivaju cigla od glinenih blokova) koji se postavljaju lepkom, a ne malterom

Opeke se prave na sličan način kao i opeke od blata, osim što su bez vlaknastog veziva kao što je slama i peku se („spaljuju“ u stezaljci za cigle ili peći) nakon što se osuše na vazduhu da bi se trajno stvrdnule. Glinene opeke pečene u peći su keramički materijal. Pečene cigle mogu biti pune ili imati šupljine koje pomažu u sušenju i čine ih lakšima i podesnijim za transport. Pojedinačne cigle se postavljaju jedna na drugu u nizovima pomoću maltera. Uzastopni tokovi se koriste za izgradnju zidova, lukova i drugih arhitektonskih elemenata. Zidovi od pečene cigle su obično znatno tanji od nabijača/ćerpiča, a zadržavaju istu vertikalnu čvrstoću. Oni zahtevaju više energije za stvaranje, ali su lakši za transport i skladištenje, i imaju manju težinu su od kamenih blokova. Rimljani su u velikoj meri koristili pečenu ciglu oblika i tipa koji se sada nazivaju rimske cigle.[2] Gradnja od cigle je stekla veliku popularnost sredinom 18. i 19. veka. To je bilo zbog nižih troškova sa povećanjem proizvodnje cigle[3] i zaštite od požara u gradovima sa stalnom gužvom.

Cementni kompoziti uredi

Cementno vezani kompoziti su napravljeni od hidratizovane cementne paste koja vezuje drvo, čestice ili vlakna za izradu prefabrikovanih građevinskih komponenti. Različiti vlaknasti materijali, uključujući papir, fiberglas i ugljena vlakna su korišćeni kao veziva.

Drvo i prirodna vlakna se sastoje od različitih rastvorljivih organskih jedinjenja kao što su ugljeni hidrati, glikozidi i fenolici. Poznato je da ova jedinjenja usporavaju vezivanje cementa. Stoga, pre upotrebe drveta u izradi cementnih kompozita, procenjuje se njegova kompatibilnost sa cementom.

Kompatibilnost drvo-cement je odnos parametra koji se odnosi na svojstvo drvo-cementnog kompozita i čiste cementne paste. Kompatibilnost se često izražava kao procentualna vrednost. Za određivanje kompatibilnosti drvo-cement koriste se metode zasnovane na različitim osobinama, kao što su karakteristike hidratacije, čvrstoća, međufazna veza i morfologija. Istraživači koriste različite metode kao što su merenje karakteristika hidratacije mešavine cementa i agregata;[4][5][6] poređenje mehaničkih svojstava mešavine cementa i agregata[7][8] i vizuelna procena mikrostrukturnih svojstava drvno-cementnih mešavina.[9] Utvrđeno je da je test hidratacije merenjem promene temperature hidratacije sa vremenom najpogodniji metod. Nedavno su Karade et al.[10] razmotrili ove metode procene kompatibilnosti i predložili metod zasnovan na 'konceptu zrelosti', odnosno uzimajući u obzir i vreme i temperaturu reakcije hidratacije cementa.

Održivost uredi

Godine 2017, zgrade i izgradnja zajedno su konzumirali 36% finalne energije proizvedene na globalnom nivou, a odgovorni za 39% globalnih CO2 emisija vezanih za energiju.[11]. Udeo samog građevinarstva bio je samo 6% do 11%. Potrošnja energije tokom proizvodnje građevinskog materijala, pretežno zbog upotrebe električne energije, dominantni je doprinosilac učešću građevinske industrije. Ugrađena energija relevantnih građevinskih materijala u SAD navedena je u sledećoj tabeli.

Materijal Sadržana energija
kBtu/lb MJ/kg
cigle 1,66 3,86
cement 3,23 7,51
glina 15,2 35,36
beton 0,58 1,35
bakar 25,77 59,94
ravno staklo 10,62 24,70
gips 10,38 24,14
tvrda šperploča i furnir 15,19 35,33
kreč 1,92 4,47
izolacija od mineralne vune 12,6 29,31
primarni aluminijum 80,17 186,48
šperploča do mekog drveta i furnir 3,97 9,23
kamen 1,43 3,33
čist čelik 10,39 24,17
drvena građa 2,7 6,28

Podaci potiču iz recenziranog izveštaja koji su objavili Diksit et. al.[12]

Vidi još uredi

Reference uredi

  1. ^ "Building" def. 2 and 4, "material" def. 1. Oxford English Dictionary Second Edition on CD-ROM (v. 4.0)© Oxford University Press 2009
  2. ^ [1] Arhivirano 2013-04-02 na sajtu Wayback Machine History of bricks wienerberger.com
  3. ^ „Top 5 Reasons Why Bricks Are The Most Popular Building Material”. primedb.co. 11. 5. 2017. Arhivirano iz originala 20. 06. 2017. g. Pristupljeno 29. 06. 2023. 
  4. ^ Sandermann, W. and Kohler, R. (1964) Studies on mineral-bonded wood materials. IV. A short test of the aptitudes of woods for cement-bonded materials. Holzforschung 18, 53:59.
  5. ^ Weatherwax, R.C. and Tarkow, H. (1964) Effect of wood on setting of Portland cement. For. Prod. J. 14(12), 567–570.
  6. ^ Hachmi, M., Moslemi, A.A. and Campbell, A.G. (1990) A new technique to classify the compatibility of wood with cement. Wood Sci. Technol. 24(4), 345–354.
  7. ^ Hong, Z. and Lee, A.W.C. (1986) Compressive strength of cylindrical samples as an indicator of wood- cement compatibility. For. Prod. J. 36(11/12), 87–90.
  8. ^ Demirbas, A. and Aslan, A. (1998) Effects of ground hazelnut shell, wood and tea waste on the mechanical properties of cement. Cement Concrete Res. 28(8), 1101–1104.
  9. ^ Ahn, W.Y. and Moslemi, A.A. (1980) SEM examination of wood-Portland cement bonds. Wood Sci .13(2), 77–82.
  10. ^ Karade SR, Irle M, Maher K (2003) Assessment of wood-cement compatibility: A new approach. Holzforschung, 57: 672–680.
  11. ^ „Global Status Report 2017 | World Green Building Council”. www.worldgbc.org. Pristupljeno 2019-03-12. 
  12. ^ Dixit, Manish K.; Culp, Charles H.; Fernandez-Solis, Jose L. (2015-02-03). „Embodied Energy of Construction Materials: Integrating Human and Capital Energy into an IO-Based Hybrid Model”. Environmental Science & Technology. 49 (3): 1936—1945. ISSN 0013-936X. doi:10.1021/es503896v. 

Literatura uredi

  • Željko V, Ivan Đ, Dijana K i Marija Đ (2016): Tehničko i informatičko obrazovanje 6 za 6. razred osnovne škole, Novi Logos — ISBN 978-86-6109-078-3.
  • Slobodan P. i Tijana T. (Beograd, 2012): Tehničko i informatičko obrazovanje za 6. razred osnovne škole, Zavod za udžbenike — ISBN 978-86-17-17758-2.
  • Hewson, Nigel R. (2003). Prestressed Concrete Bridges: Design and Construction. Thomas Telford. ISBN 0-7277-2774-5.
  • Heyman, Jacques (1999). The Science of Structural Engineering. Imperial College Press. ISBN 1-86094-189-3.
  • Hosford, William F. (2005). Mechanical Behavior of Materials. Cambridge University Press. ISBN 0-521-84670-6.
  • Blockley, David (2014). A Very Short Introduction to Structural Engineering. Oxford University Press ISBN 978-0-19967193-9.
  • Bradley, Robert E.; Sandifer, Charles Edward (2007). Leonhard Euler: Life, Work and Legacy. Elsevier. ISBN 0-444-52728-1.
  • Chapman, Allan. (2005). England's Leornardo: Robert Hooke and the Seventeenth Century's Scientific Revolution. CRC Press. ISBN 0-7503-0987-3.
  • Dugas, René (1988). A History of Mechanics. Courier Dover Publications. ISBN 0-486-65632-2.
  • Feld, Jacob; Carper, Kenneth L. (1997). Construction Failure. John Wiley & Sons. ISBN 0-471-57477-5.
  • Galilei, Galileo. (translators: Crew, Henry; de Salvio, Alfonso) (1954). Dialogues Concerning Two New Sciences. Courier Dover Publications. ISBN 0-486-60099-8
  • Kirby, Richard Shelton (1990). Engineering in History. Courier Dover Publications. ISBN 0-486-26412-2.
  • Heyman, Jacques (1998). Structural Analysis: A Historical Approach. Cambridge University Press. ISBN 0-521-62249-2.
  • Labrum, E.A. (1994). Civil Engineering Heritage. Thomas Telford. ISBN 0-7277-1970-X.
  • Lewis, Peter R. (2004). Beautiful Bridge of the Silvery Tay. Tempus.
  • Mir, Ali (2001). Art of the Skyscraper: the Genius of Fazlur Khan. Rizzoli International Publications. ISBN 0-8478-2370-9.
  • Rozhanskaya, Mariam; Levinova, I. S. (1996). "Statics" in Morelon, Régis & Rashed, Roshdi (1996). Encyclopedia of the History of Arabic Science, vol. 2–3, Routledge. ISBN 0-415-02063-8
  • Whitbeck, Caroline (1998). Ethics in Engineering Practice and Research. Cambridge University Press. ISBN 0-521-47944-4.
  • Hoogenboom P.C.J. (1998). "Discrete Elements and Nonlinearity in Design of Structural Concrete Walls", Section 1.3 Historical Overview of Structural Concrete Modelling, ISBN 90-901184-3-8.
  • Nedwell, P.J.; Swamy, R.N.(ed) (1994). Ferrocement:Proceedings of the Fifth International Symposium. Taylor & Francis. ISBN 0-419-19700-1.
  • International Journal of Emergency Management, ISSN 1741-5071 (electronic) ISSN 1471-4825 (paper), Inderscience Publishers
  • Journal of Homeland Security and Emergency Management ISSN 1547-7355, Bepress
  • Australian Journal of Emergency Management (electronic) ISSN 1324-1540 (paper), Emergency Management Australia
  • Karanasios, S. (2011). In R. Heeks & A. Ospina (Eds.). Manchester: Centre for Development Informatics, University of Manchester
  • The ALADDIN Project, a consortium of universities developing automated disaster management tools
  • Emergency Management Australia (2003) Community Developments in Recovering from Disaster, Commonwealth of Australia, Canberra
  • Plan and Preparation: Surviving the Zombie Apocalypse, (paperback), CreateSpace, Introductory concepts to planning and preparing for emergencies and disasters of any kind.
  • Bates and Jackson, 1980, Glossary of Geology: American Geological Institute.
  • Krynine and Judd, 1957, Principles of Engineering Geology and Geotechnics: McGraw-Hill, New York.
  • Holtz, R. and Kovacs, W. (1981), An Introduction to Geotechnical Engineering, Prentice-Hall, Inc. ISBN 0-13-484394-0
  • Bowles, J. (1988), Foundation Analysis and Design, McGraw-Hill Publishing Company. ISBN 0-07-006776-7
  • Cedergren, Harry R. (1977), Seepage, Drainage, and Flow Nets, Wiley. ISBN 0-471-14179-8
  • Kramer, Steven L. (1996), Geotechnical Earthquake Engineering, Prentice-Hall, Inc. ISBN 0-13-374943-6
  • Freeze, R.A. & Cherry, J.A., (1979), Groundwater, Prentice-Hall. ISBN 0-13-365312-9
  • Lunne, T. & Long, M.,(2006), Review of long seabed samplers and criteria for new sampler design, Marine Geology, Vol 226, p. 145–165
  • Mitchell, James K. & Soga, K. (2005), Fundamentals of Soil Behavior 3rd ed., John Wiley & Sons, Inc. ISBN 978-0-471-46302-3
  • Rajapakse, Ruwan., (2005), "Pile Design and Construction", 2005. ISBN 0-9728657-1-3
  • Fang, H.-Y. and Daniels, J. (2005) Introductory Geotechnical Engineering : an environmental perspective, Taylor & Francis. ISBN 0-415-30402-4
  • NAVFAC (Naval Facilities Engineering Command) (1986) Design Manual 7.01, Soil Mechanics, US Government Printing Office
  • NAVFAC (Naval Facilities Engineering Command) (1986) Design Manual 7.02, Foundations and Earth Structures, US Government Printing Office
  • NAVFAC (Naval Facilities Engineering Command) (1983) Design Manual 7.03, Soil Dynamics, Deep Stabilization and Special Geotechnical Construction, US Government Printing Office
  • Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice 3rd Ed., John Wiley & Sons, Inc. ISBN 0-471-08658-4
  • Santamarina, J.C., Klein, K.A., & Fam, M.A. (2001), "Soils and Waves: Particulate Materials Behavior, Characterization and Process Monitoring", Wiley, ISBN 978-0-471-49058-6
  • Firuziaan, M. and Estorff, O., (2002), "Simulation of the Dynamic Behavior of Bedding-Foundation-Soil in the Time Domain", Springer Verlag.
  • „What is Civil Engineering?”. The Canadian Society for Civil Engineering. Arhivirano iz originala 12. 8. 2007. g. Pristupljeno 8. 8. 2007. 
  • „Civil engineering”. Encyclopædia Britannica. Pristupljeno 9. 8. 2007. 
  • „Working in the Public Sector Versus Private Sector for Civil Engineering Professionals”. The Civil Engineering Podcast. Engineering Management Institute. 5. 6. 2019. 
  • Blockley, David (2014). Structural Engineering: a very short introduction. New York: Oxford University Press. ISBN 978-0-19-967193-9. 
  • Chen, W.F.; Liew, J.Y. Richard, ur. (2002). The Civil Engineering Handbook. CRC Press. ISBN 978-0-8493-0958-8. 
  • Muir Wood, David (2012). Civil Engineering: a very short introduction. New York: Oxford University Press. ISBN 978-0-19-957863-4. 
  • Ricketts, Jonathan T.; Loftin, M. Kent; Merritt, Frederick S., ur. (2004). Standard handbook for civil engineers (5 izd.). McGraw Hill. ISBN 978-0-07-136473-7. 

Spoljašnje veze uredi