Лапласова трансформација

Лапласова трансформација (названа по Пјер-Симон Лапласу) је интегрална трансформација, која дату каузалну функцију f(t) (оригинал) пресликава из временског домена (t = време) у функцију F(s) у комплексном спектралном домену.[1] Лапласова трансформација, иако је добила име у његову част, јер је ову трансформацију користио у свом раду о теорији вероватноће, трансформацију је заправо открио Леонард Ојлер, швајцарски математичар из осамнаестог века.

Појам оригиналаУреди

Функција t->f(t) назива се оригиналом ако испуњава следеће услове:

1. f је интеграбилна на сваком коначном интервалу t осе
2. за свако t<0, f(t)=0
3. постоје M и s0, тако да је  

Дефиниција Лапласове трансформацијеУреди

 

Функција F(s) је »слика« или лапласова трансформација »оригинала« f(t).

За случај да је   добија се једнострана Фуријеова трансформација:

 
 
 

ОсобинеУреди

ЛинеарностУреди

 

Теорема сличностиУреди

Ако је  , тада је  , при чему је  

Диференцирање оригиналаУреди

Ако је   и  , тада је  

Диференцирање сликеУреди

Ако је  , тада је  , односно индукцијом се потврђује да важи  

Интеграција оригиналаУреди

Ако је   и  , тада је  

Интеграција сликеУреди

Ако постоји интеграл  , тада је  

Теорема померањаУреди

 

Теорема кашњењаУреди

 

Лапласова трансформација конволуције функцијаУреди

 

Ова особина је позната као Борелова теорема. Напомена: дефиниција конволуције је:  

Лапласова трансформација периодичних функцијаУреди

Ако   има особину  , тада важи  

ДоказУреди

 
 
 
 

Одакле следи:  

Табела најчешће коришћених Лапласових трансформацијаУреди

Једнострана Лапласова трансформација има смисла само за не-негативне вредности t, стога су све временске функције у табели поможене са Хевисајдовом функцијом.

ID Функција Временски домен
 
Лапласов s-домен
(фреквентни домен)
 
Област конвергенције
за каузалне системе
1 идеално кашњење    
1a јединични импулс      
2 закашњени n-ти степен
са фреквенцијским померањем
     
2a n-ти степен
(за цео број n)
     
2a.1 q-ти степен
(за реално q)
     
2a.2 Хевисајдова функција      
2b закашњена Хевисајдова функција      
2c рампа функција      
2d фреквенцијско померање n-тог реда      
2d.1 експоненцијално опадање      
3 експоненцијално приближавање      
4 синус      
5 косинус      
6 синус хиперболикус      
7 косинус хиперболикус      
8 експоненцијално опадајући
синус
     
9 експоненцијално опадајући
косинус
     
10 n-ти корен      
11 природни логаритам      
12 Беселова функција
прве врсте,
реда n
     
 
13 модификована Беселова функција
прве врсте,
реда n
     
14 Беселова функција
друге врсте,
нултог реда
     
15 модификована Беселова функција
друге врсте,
нултог реда
     
16 функција грешке      
Објашњења:

Инверзна Лапласова трансформацијаУреди

У општем случају, оригинал f(t) дате слике F(s) добија се решавањем Бромвичовог интеграла:

 

где је   реални део било ког сингуларитета функције  .

С обзиром да се овде интеграли комплексна променљива, потребно је користити методе комплексне математичке анализе. Многи примери инверзне Лапласове трансформације наведени су у табели изнад. У пракси, функције се трансформишу у примере из таблице, на пример разлагањем на просте факторе.

Дискретна Лапласова трансформацијаУреди

За функцију целобројне променљиве   њена дискретна Лапласова трансформација се дефинише као:

 

Конвергенција овог реда зависи од  .

Све особине и теореме регуларне Лапласове трансформације имају своје еквиваленте у дискретној Лапласовој трансформацији.

ПрименаУреди

У математици Лапласова трансформација се користи за анализирање линеарних, временски непроменљивих система, као: електричних кола, хармонијских осцилатора, оптичких уређаја и механичких система. Има примене у решавању диференцијалних једначина и теорији вероватноће.

РеференцеУреди

ЛитератураУреди

  • Bracewell, Ronald N. (1978), The Fourier Transform and its Applications (2nd изд.), McGraw-Hill Kogakusha, ISBN 978-0-07-007013-4 
  • Bracewell, R. N. (2000), The Fourier Transform and Its Applications (3rd изд.), Boston: McGraw-Hill, ISBN 978-0-07-116043-8 
  • Feller, William (1971), An introduction to probability theory and its applications. Vol. II., Second edition, New York: John Wiley & Sons, MR 0270403 
  • Korn, G. A.; Korn, T. M. (1967), Mathematical Handbook for Scientists and Engineers (2nd изд.), McGraw-Hill Companies, ISBN 978-0-07-035370-1 
  • Widder, David Vernon (1941), The Laplace Transform, Princeton Mathematical Series, v. 6, Princeton University Press, MR 0005923 
  • Williams, J. (1973), Laplace Transforms, Problem Solvers, George Allen & Unwin, ISBN 978-0-04-512021-5 
  • Takacs, J. (1953), „Fourier amplitudok meghatarozasa operatorszamitassal”, Magyar Hiradastechnika (на језику: Hungarian), IV (7–8): 93—96 
  • Euler, L. (1744), „De constructione aequationum” [The Construction of Equations], Opera Omnia, 1st series (на језику: латински), 22: 150—161 
  • Euler, L. (1753), „Methodus aequationes differentiales” [A Method for Solving Differential Equations], Opera Omnia, 1st series (на језику: латински), 22: 181—213 
  • Euler, L. (1992) [1769], „Institutiones calculi integralis, Volume 2” [Institutions of Integral Calculus], Opera Omnia, 1st series (на језику: латински), Basel: Birkhäuser, 12, ISBN 978-3764314743 , Chapters 3–5
  • Euler, Leonhard (1769), Institutiones calculi integralis [Institutions of Integral Calculus] (на језику: латински), II, Paris: Petropoli, ch. 3–5, pp. 57–153 
  • Grattan-Guinness, I (1997), „Laplace's integral solutions to partial differential equations”, Ур.: Gillispie, C. C., Pierre Simon Laplace 1749–1827: A Life in Exact Science, Princeton: Princeton University Press, ISBN 978-0-691-01185-1 
  • Lagrange, J. L. (1773), Mémoire sur l'utilité de la méthode, Œuvres de Lagrange, 2, стр. 171—234 
  • Arendt, Wolfgang; Batty, Charles J.K.; Hieber, Matthias; Neubrander, Frank (2002), Vector-Valued Laplace Transforms and Cauchy Problems, Birkhäuser Basel, ISBN 978-3-7643-6549-3 .
  • Davies, Brian (2002), Integral transforms and their applications (Third изд.), New York: Springer, ISBN 978-0-387-95314-4 
  • Deakin, M. A. B. (1981), „The development of the Laplace transform”, Archive for History of Exact Sciences, 25 (4): 343—390, doi:10.1007/BF01395660 
  • Deakin, M. A. B. (1982), „The development of the Laplace transform”, Archive for History of Exact Sciences, 26 (4): 351—381, doi:10.1007/BF00418754 
  • Doetsch, Gustav (1974), Introduction to the Theory and Application of the Laplace Transformation, Springer, ISBN 978-0-387-06407-9 
  • Mathews, Jon; Walker, Robert L. Mathematical methods of physics , New York: W. A. Benjamin. 1970. ISBN 978-0-8053-7002-7.
  • Polyanin, A. D.; Manzhirov, A. V. (1998), Handbook of Integral Equations, Boca Raton: CRC Press, ISBN 978-0-8493-2876-3 
  • Schwartz, Laurent (1952), „Transformation de Laplace des distributions”, Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] (на језику: French), 1952: 196—206, MR 0052555 
  • Schwartz, Laurent (2008) [1966], Mathematics for the Physical Sciences, Dover Books on Mathematics, New York: Dover Publications, ISBN 978-0-486-46662-0  - See Chapter VI. The Laplace transform.
  • Siebert, William McC. (1986), Circuits, Signals, and Systems, Cambridge, Massachusetts: MIT Press, ISBN 978-0-262-19229-3 
  • Widder, David Vernon (1945), „What is the Laplace transform?”, The American Mathematical Monthly, 52 (8): 419—425, ISSN 0002-9890, JSTOR 2305640, MR 0013447, doi:10.2307/2305640 

Спољашње везеУреди