Полисахарид

дуг ланац јединица моносахарида (угљених хидрата)
(преусмерено са Polysaccharides)

Полисахариди су полимерни угљено хидратни молекули који се састоје од дугих ланаца моносахаридних јединица везаних заједно гликозидним везама. Из њих се при хидролизи ослобађају конститутивни моносахариди или олигосахариди. Они су у опсегу структура од линеарних до високо разгранатих. Према биолошкој функцији се деле на: резервне и структурне полисахариде. Резервни полисахариди представљају молекуле у којима се чува (складишти) хемијска енергија. Најраспрострањенији резервни полисахариди су: скроб, код биљака и гликоген, код животиња. Скроб и гликоген се састоје од већег броја молекула глукозе. Структурни полисахариди учествују у изградњи ћелијских делова. Међу њима су најраспрострањенији: целулоза, која је главни састојак ћелијског зида биљака, хитин, који зграђује скелет зглавкара) и агар, кога садрже алге).

3Д структура целуозе, бета-глуканског полисахарида.
Амилоза је линеарни полимер који се углавном састоји од глукозе са α(1→4) везама. Молекул може да садржи неколико хиљада глукозних јединица. Амилоза је једна од две компоненте скроба, при чему је друга амилопектин.

Полисахариди су често веома хетерогени, са малим модификацијама у понављајућим јединицама. У зависности од структуре, ови макромолекули могу да имају различита својства од њихових моносахаридних грађевних блокова. Они могу да буду аморфни или чак нерастворни у води.[1] Кад су сви моносахариди у полисахариду истог типа, за полисахарид се каже да је хомополисахарид или хомогликан, док кад је више од једног типа моносахарида присутно они се називају хетерополисахаридима или хетерогликанима.[2][3]

Природни сахариди су генерално једноставни угљени хидрати звани моносахариди са општом формулом (CH2O)n где је n три или веће. Примери моносахарида су глукоза, фруктоза, и глицералдехид.[4] Полисахариди, имају општу формулу Cx(H2O)y где је x обично велики број између 200 и 2500. Кад су понављајуће јединице у полимерној основи шестоугљенични моносахариди, као што је то често случај, општа формула се поједностављује на (C6H10O5)n, при чему је типично 40≤n≤3000.

По устаљеној конвенцији, полисахариди садрже више од десет моносахаридних јединица, док олигосахариди садрже три до десет моносахаридних јединица; мада прецизно разграничење може у извесној мери да варира. Полисахариди су важна класа биолошких полимера. Њихова функција у живим организмима је обично било структурна или складишна. Скроб (глукозни полимер) се користи као складишни полисахарид у биљкама. Он је присутан у виду амилозе и разгранатог амилопектина. Код животиња, структурно слични глукозни полимер је гушће разгранати гликоген, који се понекад назива „животињским скробом”. Својства гликогена узрокују његов релативно брз метаболизам, што је подесно за активни животни стил животиња.

Целулоза и хитин су примери структурних полисахарида. Целулоза се користи у ћелијским зидовима биљки и других организама, и један је од најшире заступљених органских молекула на Земљи.[5] Она има мноштво примена, као што је значајна улога у индустрији папира и текстила, а користи се и као сировина при продукцији рајона (путем вискозног процеса), целулозног ацетата, целулоида, и нитроцелулозе. Хитин има сличну структуру, али има бочне ланце који садрже азот, чиме се повећава његова јачина. Он је присутан у егзоскелетону зглавкара и у ћелијским зидовима појединих гљивица. Он исто тако има мноштво примена, укључујући хируршке конце. Полисахариди исто тако обухватају калозу или ламинарин, хризоламинарин, ксилан, арабиноксилан, манан, фукоидан и галактоманин.

Функција уреди

Структура уреди

Прехрамбени полисахариди су чест извор енергије. Многи организми могу да разложе скроб у глукозу; међутим, већина организама не може да метаболише целулозу или друге полисахариде као што су хитин и арабиноксилани. Те угљеноводоничне типове могу да метаболишу неки типови бактерија и протиста. Преживари и термити, на пример, користе микроорганизме да разложе целулозу.

Мада ови комплексни полисахариди нису лако сварљиви, они представљају важне дијетарне елементе за људе. Дијететска влакна побољшавају варење и имају низ других корисних својстава. Главна активност дијетарних влакана је промена природе садржаја гастроинтестиналног тракта, што условљава начин на који се други нутријенти и хемикалије апсорбују.[6][7] Растворна влакна се везују за жучне киселине у танким цревима, чиме се смањују шансе за њихов улазак у тело; то има за последицу снижење нивоа холестерола у крви.[8] Растворљива влакна такође смањују апсорпцију шећера, редукују шећерни одговор након јела, нормализују нивое липида у крви и, након што буду ферментисана у дебелом цреву, формирају кратколанчане масне киселине као нуспроизводе са широким распоном физиолошких активности. Иако су нерастворна влакна повезана са смањеним ризиком за дијабетеса, механизам путем којег до тога долази је непознат.[9]

Дијетарна влакна се сматрају важним за исхрану, и регулаторне власти у многим развијеним земљама препоручују повећање уноса влакана, мада се она формално не сматрају есенцијалним нутријентом (према подацима из 2005. године).[6][7][10][11]

Складиштење полисахарида уреди

Скроб уреди

Скроб је глукозни полимер у коме су глукопиранозне јединице везане путем алфа-веза. Он се састоји од смеше амилозе (15–20%) и амилопектина (80–85%). Амилоза се састоји од линеарних ланаца са неколико стотина глукозних молекула, а амилопектин је разгранати молекул сачињен од неколико хиљада глукозних јединица (сваки ланац од 24–30 глукозних јединица је једна јединица амилопектина). Скробови су нерастворни у води. Они могу да буду сварени разлагањем алфа-веза (гликозидних веза). Људи и животиње имају амилазе, тако да они могу да сваре скроб. Кромпир, пиринач, пшеница, и кукуруз су главни извори скроба у људској исхрани. Формирање молекула скроба је начин на који биљке складиште глукозу.

Гликоген уреди

Гликоген служи као секундарно дугорочно енергетско складиште у животињским и гљивичним ћелијама, док су примарне енергетске залихе у адипозном ткиву. Гликоген се првенствено формира у јетри и мишићима, али исто тако може да буде формиран гликогенезом у мозгу и желуцу.[12]

Гликоген је аналоган скробу, глукозном полимеру у биљкама, и понекад се назива животињским скробом,[13] јер има сличну структуру са амилопектином али је је знатно више разгранат и у већој мери је компактан од скроба. Гликоген је полимер повезан са α(1→4) гликозидним везама, и са гранама везаним α(1→6) везама. Гликоген је присутан у облику гранула у цитосолу/цитоплазми у многим ћелијским типовима, и има важну улогу у глукозном цилусу. Гликоген представља енергетску резерву која се може брзо мобилизовати да се задовоље нагле потребе за глукозом, која је мање компактна и доступнија од триглицерида (липида).

У јетреним хепатоцитима, гликоген може да сачињава до осам процената (100–120 g код одрасле особе) свеже тежине убрзо након оброка.[14] Једино гликоген ускладиштен у јетри може да буде доступан другим органима. У мишићима, гликоген је присутан у ниским концентрацијама од једног до два процента мишићне масе. Количина гликогена ускладиштена у телу — а посебно унутар мишића, јетре, и црвених крвних зрнаца[15][16][17] — варира са физичком активношћу, базалним метаболичким стушњем, и прехрамбеним навикама као што је повремено пошћење. Мале количине гликогена се формирају у бубрезима, а још мање количине у појединим глијалним ћелијама у мозгу и белим крвним зрнцима. Материца такође складишти гликоген током трудноће, како би се хранио ембрион.[14]

Гликоген се састоји од разгранатог ланца од глукозних остатака. Он се складишти у јетри и мишићима.

  • Он је енергетска резерва за животиње.
  • Он је главна форма угљених хидрата ускладиштених у животињском телу.
  • Он је нерастворан у води. Гликоген постаје смеђе-црвен кад се помеша са јодом.
  • Из њега се ослобађа глукоза при хидролизи.

Структурни полисахариди уреди

Арабиноксилани уреди

Арабиноксилани су присутни у примарним и секундарним ћелијским зидовима биљки. Они су кополимери два шећера: арабиноза и ксилоза. Арабиноксилани могу да имају позитивне ефекте на људско здравље.[19]

Референце уреди

  1. ^ Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M (1999). Essentials of glycobiology. Cold Spring Har J. Cold Spring Harbor Laboratory Press. ISBN 978-0-87969-560-6. 
  2. ^ IUPAC. „homopolysaccharide (homoglycan)”. Kompendijum hemijske terminologije (Internet izdanje).
  3. ^ IUPAC. „heteropolysaccharide (heteroglycan)”. Kompendijum hemijske terminologije (Internet izdanje).
  4. ^ Matthews, C. E.; K. E. Van Holde; K. G. Ahern Biochemistry. 3rd edition. Benjamin Cummings. 1999. ISBN 978-0-8053-3066-3.
  5. ^ N. A. Campbell (1996). Biology (4th изд.). New York: Benjamin Cummings. стр. 23. ISBN 978-0-8053-1957-6. 
  6. ^ а б „Dietary Reference Intakes for Energy, Carbohydrate, fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients) (2005), Chapter 7: Dietary, Functional and Total fiber.” (PDF). US Department of Agriculture, National Agricultural Library and National Academy of Sciences, Institute of Medicine, Food and Nutrition Board. Архивирано из оригинала (PDF) 27. 10. 2011. г. 
  7. ^ а б Eastwood M, Kritchevsky D (2005). „Dietary fiber: how did we get where we are?”. Annu Rev Nutr. 25: 1—8. PMID 16011456. doi:10.1146/annurev.nutr.25.121304.131658. 
  8. ^ Anderson JW, Baird P, Davis RH, et al. (2009). „Health benefits of dietary fiber” (PDF). Nutr Rev. 67 (4): 188—205. PMID 19335713. doi:10.1111/j.1753-4887.2009.00189.x. Архивирано из оригинала (PDF) 10. 8. 2017. г. Приступљено 19. 5. 2019. 
  9. ^ Weickert MO, Pfeiffer AF (2008). „Metabolic effects of dietary fiberand any other substance that consume and prevention of diabetes”. J Nutr. 138 (3): 439—42. PMID 18287346. doi:10.1093/jn/138.3.439. 
  10. ^ „Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre”. EFSA Journal. 8 (3): 1462. 25. 3. 2010. doi:10.2903/j.efsa.2010.1462. 
  11. ^ Jones PJ, Varady KA (2008). „Are functional foods redefining nutritional requirements?”. Appl Physiol Nutr Metab. 33 (1): 118—23. PMID 18347661. doi:10.1139/H07-134. Архивирано из оригинала (PDF) 13. 10. 2011. г. 
  12. ^ Anatomy and Physiology. Saladin, Kenneth S. McGraw-Hill, 2007.
  13. ^ „Animal starch”. Merriam Webster. Приступљено 11. 5. 2014. 
  14. ^ а б Campbell, Neil A.; Williamson, Brad; Heyden, Robin J. (2006). Biology: Exploring Life. Boston, Massachusetts: Pearson Prentice Hall. ISBN 978-0-13-250882-7. 
  15. ^ Moses SW, Bashan N, Gutman A (децембар 1972). „Glycogen metabolism in the normal red blood cell”. Blood. 40 (6): 836—43. PMID 5083874. [мртва веза]
  16. ^ INGERMANN, ROLFF L.; VIRGIN, GARTH L. (20. 1. 1987). „Glycogen Content and Release of Glucose from Red blood cells of the Sipunculan Worm Themiste Dyscrita” (PDF). jeb.biologists.org/. Journal of Experimental Biology. Приступљено 21. 7. 2017. 
  17. ^ Miwa I, Suzuki S (новембар 2002). „An improved quantitative assay of glycogen in erythrocytes”. Annals of Clinical Biochemistry. 39 (Pt 6): 612—3. PMID 12564847. doi:10.1258/000456302760413432. 
  18. ^ William D. McArdle; Frank I. Katch; Victor L. Katch (2006). Exercise physiology: energy, nutrition, and human performance (6th изд.). Lippincott Williams & Wilkins. стр. 12. ISBN 978-0-7817-4990-9. 
  19. ^ Mendis, M; Simsek, S (15. 12. 2014). „Arabinoxylans and human health”. Food Hydrocolloids. 42: 239—243. doi:10.1016/j.foodhyd.2013.07.022. 

Спољашње везе уреди